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Abstract

We introduce an extension of some notions from Differential Ge-
ometry, giving a natural application to the paths of certain stochastic
processes. We introduce first the notion of transversal derivative with
the help of which we define the notion of generalized curvature. The
definition can be extended to general rough surfaces, by defining a gen-
eralized Gaussian type curvature. The same analysis can be performed
higher dimensions. The extension of the typical Differential Geometry
tools is motivated by the study of Feynman path integral formulation
in Quantum Mechanics. In addition, we present some applications, two
of which we describe in more detail: generalized curvature flow and ge-
ometrical notions in Euclidean Field Theory (EFT). The generalized
curvature flow, can be used to model the dynamics of growth process
with fractal boundaries. For the second application, it is known that
in EFT, the Feynman-Kac formula plays an important role. This ap-
proach involves Brownian motion trajectories that do not have a well
defined derivative. On the other hand, General Relativity (GR) has a
well-established geometric approach using tools from Differential Ge-
ometry. Having no classical notion of derivative for the paths used
in the study of EFT, it is hard to find a suitable classical geometric
interpretation in this setting. The aim of this project, between others,
is to find a suitable geometric interpretation of EFT, in order to link
it with the approach of General Relativity. We believe that most of
the other notions from Differential Geometry can be extended in this
language.
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1 Preliminaries

In Differential Geometry, one has various ways to define the notion of cur-
vature. One possibility is using the parametrization by arclength of smooth
curves and the angle between the derivatives at the curve.

Another possibility is to work directly with general parametrization. One
can as well define the curvature for a planar curve, for a general parametriza-
tion. In particular, in the case the curve is the graph of a function, i.e.
y = y(z), the curvature is defined as

y'(z)

= W e

There are previous works such as [12], [I1I] that come from an optimal
transport viewpoint (and discuss inequalities that a certain notion of curva-
ture satisfies).

The novelty of this approach consists of considering new geometrical
objects (in this case, envelopes instead of lines, in higher dimensions hyper-
envelopes instead of hyperplanes) that one uses to study the rough spaces
locally. Even though there is not a well defined notion of classical derivative,
there are natural transversal notions that are further used to define a notion
of curvature.

[To be completed and refined|

2 Generalized curvature

In Stochastic Analysis, some natural self similar processes were so far very
well studied. These processes have respective envelopes to describe their
asymptotic behavior near the origin given by the corresponding Law of Iter-
ated Logarithm (LIL). One important example is the one-dimensional Brow-
nian motion with an envelope at ¢ = 0 given by precise functions. Another
class of objects includes the « self-similar Markov processes with envelopes
that depend on some parameter o > 0 (see [10]).
We start to introduce the objects of our analysis.

Definition 2.1. A (¢(t),1(t))- weak symmetric curve is a curve Xy that
evolves with respect to the (p(t),1(t))-envelope (in the sense that ¢(t) and

-)(t) represent the limsup and liminf of the increments Xy — Xy, as
[ —0).

When ¢(t) = 1(t), we use the name ¢(t)-weak symmetric curves.



In the following, we restrict our attention and write the definitions for ¢-
weak symmetric curves, for a given function ¢. However, all the notions can
be extended to the (¢,1)-weak symmetric curves. We follow this direction
since we are interested in the paths of (certain) stochastic processes that we
will show are ¢-weak symmetric lines for certain choices of ¢.

Definition 2.2 (Transversal derivative). For a ¢(t) -weak symmetric curve
in the plane, we define the transversal derivative at the pointt as the bisector
of the envelope of the curve at t > 0.

We use X 79(t) to denote the transversal derivative for the envelope
given by the function ¢(t) at t > 0. We remark that in the case of the
Brownian motion the envelope is symmetric and is given by the curve ¢(t) =
Vv2tloglogt. However, there examples of processes for which the envelope is
not symmetric.

We are ready to define the notion of generalized curvature.

Definition 2.3 (Generalized curvature). For a ¢(t) -weak symmetric curve
in the plane, we define the generalized curvature at any point tog = 0 as

dx’ T (t)
K y(to) = Tl
p\to) - (1+(X’7Tv¢(to))2)3/2'

Remark 2.4. In a similar manner, for stochastic processes, one can define
Ky for an asymmetric envelope using for the definition of the transversal
derivative as the mean of the skewed distribution characterizing the corre-
sponding stochastic process instead of the mean of a symmetric distribution
(corresponding geometrically to the bisector of the envelope).

Remark 2.5. Similarly, following the direction of arclength parametrization
in Differential Geometry, one can define a generalized curvature using a
natural notion of arclength in the fractal setting. One candidate for this is
the Hausdorff measure m?(Xs,;) of the path X; with the gauge function ¢
that makes it non-trivial such that it grows like C'(t—s) for a constant C' (that
depends on the dimension). For the Brownian motion paths in dimension
d > 2 the function is known. See, for example, Theorem 5 for d > 3 in
[2]. Alternatively, one can use the Minkowski content when nontrivial in the
definition and also its reparametrization such that it grows linearly, see [g].

Remark 2.6. The intuition behind the name weak symmetries comes from
the fact that in the case of the lines in the typical Euclidean Geometry, for



example, this curve evolves symmetrically with respect to itself (i.e., the en-
velope has no width and the transversal derivative becomes the derivative).

In general, in the case of smooth curves, the width of the envelopes is
zero, and the transversal derivative is the usual derivative. We emphasize
that our notion simplifies to the usual curvature when one considers smooth
curves.

In comparison, in the case of paths of stochastic processes with self-
similarity, the envelope has a non-trivial width. In a certain situations, for
example when M; — M, has the same distribution as the initial process, then
the envelope at zero that one computes from LIL can be found at every point
(see, for example, Brownian motion).

Let us introduce the notion of ¢-weak symmetric line.

Definition 2.7. A ¢-weak symmetric line is a curve X; that evolves with
respect to the ¢p-envelope, in the sense that +¢ and -¢ represent the limsup
and liminf of the increments Xy — Xy as l — 0, such that Ky(t) =0, for
allt > 0.

We emphasize that, in general, the envelopes are not necessarily sym-
metric. Thus, one can define a more general notion.

Definition 2.8. A (¢,v)-weak symmetric line is a curve X; that evolves
with respect to the (¢p,1)-envelope, in the sense that ¢ and -1 represent
the limsup and liminf of the increments X1y — Xy as I — 0, such that
Ky(t) =0, for allt > 0.

Example 2.9 (Brownian Motion is a.s. a ¢-weak line for ¢ = \/2tloglogt).
Using that By — B is also a Brownian motion for any fixed time s > 0, we
have that the Brownian paths in one-dimension have transversal derivatives
that remain horizontal, i.e., we obtain that the Brownian paths are a.s.
¢-weak symmetric lines.

Other examples include a-stable Markov processes, which have a-dependent
envelopes. Also, the same ideas can be naturally extended to surfaces and
general rough manifolds.

Example 2.10 (Generalized curves in d = 2 that are not ¢-weak symmetric
lines). In dimension d = 2 one can use the graph (¢, B;) to analyze the
situation. More specifically, one can use the function exp(z) applied to a
Brownian Bridge along the vertical direction for convenience and analyze
the resulting curves, that will have different generalized curvature given
proportional to the inverse of the radius of the circle that is mapped.



Figure 1: Sample of Brownian Motion as an example of a ¢-weak symmetric
line

Figure 2: Complex Exponential transformation of the graph of a path of the
one-dimensional Brownian motion

Remark 2.11 (Rough circles to describe the generalized curvature). In the
smooth geometry case, it is well known that one can use the radius of the
osculating circle in order to describe the curvature at any point. One can
design a similar approach for the class of generalized circles obtained from
the Brownian bridges in the example before using the exp(z) transformation.

[to be completed]



3 Applications: Generalized curvature flow and
Euclidean Field Theory

3.1 Generalized curvature flow- ’the one curve’ case

In the first application, the interest is in modeling one curve only. In this
regard, planar growth models provide a natural setting.

(Planar) Random growth models are a very studied class of models. One
is interested then in the shape of the growing profile, which is typically of
fractal nature when one considers natural examples coming from Biology,
etc. Omne can model this via a random collection of shapes. A natural
approach for this it is via a generalized curvature flow.

dKy _
a [t w).

In the simplest setting when the function f(¢) = 0, the solutions are either
¢-weak symmetric lines when Ky = 0 and ¢- weak symmetric circles when
K4 = C # 0. More generally, one can use this type of dynamics in order
to model naturally the growth via a flow in the generalized curvature of
these shapes. The advantage of this approach is given by the fact that this
approach also includes also rough shapes that do not have standard notion
of curvature well-defined anywhere. [to be completed|

3.2 Euclidean Field Theory- '’the many curves’ case

In the second example, the interest is on the dynamics on 'many curves’. A
natural setting for this is Feynman’s formulation of the paths integrals in
the study of Quantum Mechanics. In the following, we will restrict ourselves
to the Euclidean Field Theory formulation.

In Euclidean Field Theory, Feynman-Kac Formula along with the other
elements of Stochastic Analysis play an important role.

General Relativity is a deterministic theory formulated using the smooth
setting offered by Differential Geometry that is so far incompatible with the
probabilistic formulation of Quantum Mechanics. The weak symmetries for-
mulation attempts to define a suitable geometric formulation that combines
the classical theory of General Relativity with the probabilistic formulation
in EFT. We believe that the formulation in terms of weak symmetries will
potentially give more insights into this problem.

In light of this, we define the following example: in order to solve Ein-
stein Field Equations in the simplest setting one has to solve Ric = 0,



where Ric is the Ricci tensor (to be defined). In one-dimension, this be-
comes K = 0, where K is the curvature as in Differential Geometry. In the
weak symmetric setting, the equivalent equation will become K4 = 0, where
¢ is the function describing the envelope. The solutions to this equation are
the ¢-weak symmetric lines. Thus, the flexibility of this formulation offers
a setting in which the geometric ideas of the classical General Relativity
can be combined with the ideas of Euclidean Field Theory/ Feynman path
integral formulation. In Feynman’s path integrals approach, the particles
move from one point to another on a family of paths, rather than one tra-
jectory as in the classical theory. This is obtained naturally in the weak
symmetries setting as a solution to the vacuum (generalized) Einstein Field
Equations, in which the usual notions from Differential Geometry, such as
the Ricci tensor, are changed with the weakly symmetric version Ric, (that
is naturally the tensorial formulation of the one dimensional Ky discussed
previously). This gives that particles in flat space are allowed to move on
‘many curves’ simultaneously as all of these trajectories are solutions to the
Ricy = 0 equation.

This formulation can be seen in the picture below, where one can see
that this effect is obtained allowing the envelope to have a nontrivial width.
[to be completed]
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Figure 3: Classical versus weakly symmetric solutions, i.e. solutions to
K = 0 and K4 = 0 respectively. The function 3 controls the width of the
envelopes.

Also in the case of EFT applications, if one needs to study ¢-weak tra-
jectories coming from a certain classical trajectory, one can construct them
using the following diagram, where the functions 5 and 7 control the width
of the envelopes of the corresponding curves.



Figure 4: The diagram corresponding to £&-weak symmetric curves of gener-
alized curvature k¢ = k corresponding to the classical curvature of the circle
k = k, for a given function &

4 Multi-envelopes

Often in applications the interactions with the environment are not homoge-
nous. For example, a classical particle moving on a fluctuating environment
where there is a low decay of the effect of the surroundings of the envi-
ronment on the particle (changes that happen far away from the particle
influence the dynamics of the particle). The width of the envelope, as well
as the form of the functions ¢;cr(t), (where I is an uncountable family of
indices) describing the evolutions of the local envelopes, depend on the in-
teraction with the inhomogenous environment. This formulation has enough
flexibility to include family of envelopes describing the dynamics of particles
in non-homogenous interacting environment.

Example 4.1. Let us consider a particle evolving in an environment in
which the interactions increase in one spatial direction. Then, the particle
can be modeled as a scaled Brownian motion, i.e. the family of envelopes

Dic1=C(i)\/2tloglogt, with C'(i) an increasing sequence.

The previous example can be extended to more general interactions in
which the evolution of the envelopes is more complicated (i.e. functions
phi(i) change with i € I, i.e. we have a family of envelopes that are not all
necessarily symmetric).



5 Higher dimensions

5.1 Applications to random Riemannian metrics

In this section we study the curvature of random non-smooth metrics. These
metrics can be thought of as natural models of random metrics in the plane
with low-regularity coefficients for which we define a notion of curvature (a
more familiar example is the Poincaré upper half-plane model).

The formulation of weak symmetris also gives the possibility to define
a notion of (extended) Ricci tensors and (extended) Ricci curvature. In
Riemannian Geometry, one can compute the Ricci tensor in terms of the
Riemannian metric (with the condition that this one has at least C? coeffi-
cients). Riemann metrics of low regularity are also a natural framework to
be considered (see [I]).

Metrics weighted by (positive) functions of smooth Gaussian fields are
natural objects (see Corollary 3.20 in [3], where metrics constructed out of
Gaussian fields are linked with the behaviour of percolation clusters).

Using the weak symmetries/transversal calculus, one can compute the
Ricci curvature using the notion of transversal derivative since the usual
derivative is not well defined. The (extended) Ricci can be computed using
the metric and it depends on the second derivatives and products and first
derivatives of it (see usual formulas in Differential Geometry, where instead
of the derivative (that is infinite) in the chain rule we take the transversal
derivative).

One natural application of this is to consider a Schwarschild metric on
space-time that has rough coefficients. Then, we can use the notions of
tranvsersal derivative and curvature to do the computations. As an example
in two dimensions, see [9], ds? = —e?dt? + e?!dx? in which we substitute
and v with some Holder fields in the case of two dimensions (one can extend
the analysis for any dimensions in particular to the four dimensional case).

6 More applications and future projects

e 1) Connect the generalized curvature flow with the Glauber dynamics.

e 2) Willmore functionals appear naturally in the study of cell mem-
branes. When interfaces are rough and one can define and study the
functional for this setting using the generalized notion of curvature.
Other examples are extensions of the entropy functionals considered
by Chow ([6]). Also, for students interested in Machine Learning, I

10



foresee applications to noisy data in manifold learning by computing
minima of this notion of curvature.

3) Study the geometric notions in the QFT version in the cases when
one can undo of the Wick rotation from EFT to QFT ([5]).

4) For the Gaussian Free Field (that can be understood via testing)
there is a LIL computed (see [7]). We plan to study the equivalent
notions in that context as well.

5) The recent work [3] mentioned earlier is a resource of construct-
ing metrics out of smooth Gaussian Fields v i.e. metrics of the form
h()*euclidean metric in Corollary 3.20 in [3]. A natural extension is
to h(¢))*euclidean metrics or metrics on spheres and other geometrical
shapes with 1/; non-smooth gaussian fields. Another natural applica-
tion is to define the generalized curvature for these surfaces (also in
higher dimensions) for various choices of the function h, via an exten-
sion of the formula that allows one to compute the Ricci curvature
from the metric from Differential Geometry, as explained in the pre-
vious section. The next step is to consider the construction of the
Riemannian FPP metric on the LQG surfaces as in [4] and to define
the curvature for the LQG surface via a limiting procedure, first having
it defined for the molifier.
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