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Abstract

We consider simultaneously growing chordal multiple SLE in H, with Dyson Brownian

motion as a driver. Using results from Random Matrix Theory (RMT), specifically the fast

convergence to ’local equilibrium’ of the Dyson Brownian motion, and the Universality of

General β-Ensembles, we describe how to obtain geometric and probabilistic information on

the multiple SLE. We also give the details of a different project on the multiple SLE curves

in the radial case in D. We present a list of future directions, in both the multiple SLE

chordal and radial cases.
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1 Introduction to Random Matrix Theory

Random matrices are fundamental objects for the modeling of complex systems. A basic ex-

ample is the Wigner ensemble. The Wigner matrices H are N × N symmetric or Hermitian

matrices whose entries are random variables that are independent up to the constraint imposed

by the symmetry H = H∗ . Wigner made the observation that the distribution of the distances

between consecutive eigenvalues (that is called the gap distribution) follows an universal pattern.

Furthermore, he predicted that the universality is not restricted to the Wigner ensemble, but it

should hold for any system of sufficient large complexity, described by a large Hamiltonian.

[to be completed]

2 Introduction to SLE Theory

The Loewner equation was introduced by Charles Loewner in 1923 in [33] and it played an

important role in the proof of the Bieberbach Conjecture [6] by Louis de Branges in 1985

in [11]. In 2000 , Oded Schramm introduced a stochastic version of the Loewner equation in [39].

The stochastic version of the Loewner evolution, i.e. the Schramm-Loewner evolution, SLEκ,

generates a one parameter family of random fractal curves that are proved to describe scaling

limits of a number of discrete models that appear in planar Statistical Physics. We refer to [31]

for a detailed study of the object and many of its properties.

Numerical simulation of SLE curves has become an important aspect to investigating its

theory, see [1] and [9] for a discussion of the Ninomyia-Victoir scheme applied to SLE simulations.

Also, there is plenty of recent iinterest in the problem of continuity in the parameter κ of the

SLE traces, see for example ( [5]). An extension to the regular SLE, which is called the multiple

SLE by the community, is when the driver is given by the Dyson Brownian motions. See ( [10])

for a discussion on its formalism and some aspects of the corresponding perturbation theory.

[To be completed]

3 Acknowledgements

I would like to thank NYU-ECNU Institute of Mathematical Science at NYU Shanghai for the

support. I would like to thank Prof. G. Ben Arous for useful discussion, Prof. D. Beliaev and

4



Dr. A. Karrila for listening to the ideas and offering very useful suggestions.

4 Preliminaries

In the last years, there were a number of results on Multiple SLEs. We refer the reader to the

sequence of papers [8], [22], [13], [26], [14], [36], [3], [25], [32]. In particular, in [8], [22], [13], [26]

there is established a connection between SLE and Random Matrix Theory. Furthermore, in

[13], [26] there is a link between the multiple SLE and the Complex Burgers Equation. There is

also literature written about the connection between multiple SLEs and Conformal Field Theory

(CFT). We refer the reader to [37], as well as [32]. In the paper [29], the authors investigate

the pure partition functions of multiple SLEs and prove their existence. In addition in [36] the

pure partition functions are shown to be positive and they study the explicit one for κ = 4.

In this paper we create a further link between Random Matrix Theory and Schramm-Loewner

Evolution.

An important motivation to study the connection between Random Matrix Theory and SLE

Theory comes from the work [8] where ideas in the Conformal Field Theory are linked with the

predictions offered by the multiple SLE Theory. Specifically, in [8] is argued that the Dyson

process is related by a similarity transformation to the quantum Calogero-Sutherland model.

In our model we consider the simultaneous growth that is related via [8] with the Calogero-

Sutherland CFT model. In the papers [36] [29] it is discussed the case when the growth is not

simultaneous. The difference between the simultaneous and non-simultaneous case in terms of

drivers is discussed in [13]. See also [12] for a discussion on this topic. In this paper, we are

interested in the simultaneous growth case (that leads to Dyson Brownian motion as driver) and

in the future work we would like to study the non-simultaneous growth.

The main goal of this project is to apply results from Random Matrix Theory in order to ob-

tain geometrical information about multiple SLE curves. The main strategy consists of applying

results from the analysis of the Dyson Brownian Motion (DBM) at the level of drivers in the

Loewner differential equation (LDE) corresponding to multiple SLE curves and through typical

Loewner theory type analysis (including Carathéodory convergence type estimates, Hausdorff

distance type estimates) to push the results at the level of the multiple SLE curves/hulls.
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5 Multiple Chordal SLEs in the upper half-plane

We consider the Weyl chamber defined as

Wn = {x = (x1, x2, ..., xn) ∈ RN : x1 < x2 < .... < xN}.

Let Bj(t) , t > 0, j = 1, 2, ..., N be independent one-dimensional standard Brownian motions.

The Dyson Brownian motion with parameter β > 0 is a system of stochastic differential equations

(SDEs) for the interacting particle system on R (XN
1 (t), XN

2 (t), ..., XN
N (t)), given by

dXN
j (t) = dBj(t) +

β

2

N∑
16k6N,k 6=j

dt

XN
j (t)−XN

k (t)
,

for t ∈ [0, TX
N

] and j = 1, 2, ..., N .

The initial configuration is XN (0) = xN ∈Wn and T
Xn

= inf{XN (t) 6∈Wn}.

We set as in [26], β = 8
κ . We perform the following time-change V N

j (t) = XN
j (κt/N) and

obtain the system of SDEs V N (t) = (V N
1 (t), ...V N

N (t)) given by

dV N
j (t) =

√
κdBj(t) +

1

N

n∑
k=1

4

V N
j (t)− V N

k (t)
dt, t ∈ [0,∞).

It is well know that for the Dyson Brownian motion when β > 1, ∀xN ∈ WN we have

T x
N

= +∞, a.s. Next, we define further for t ∈ [0,∞) the multiple SLEs

∂t(g
N
t (z))

∂t
=

1

N

N∑
j=1

2

gNt (z)− V N
j (t)

,

t > 0, g0(z) = z ∈ H.

Each realization of the gNt , t ∈ [0,+∞) determines a time evolution of the n-tuple (γ1(t)
N , .., γ2(t)

N ).

In other words, gNt (z) is a conformal map from H \ ∪Nj=1γ
N
k (0, t] → H, for t ∈ [0,∞), where

γN (0, t] = ∪06s6tγNj (s), j = 1, 2, ..., N .

[to be completed]

6 Dyson Brownian Motion

6.1. Preliminaries. Let Mn(β) be the set of all n × n real (β = 1), complex (β = 2) and

quaternion matrices (β = 4), respectively. Let Sn(β) be the set of self-dual elements in Mn(β).
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Let Mt be an Sn(β) -valued Ornstein-Uhlenbeck process, meaning that Mt satisfies the SDE

dMt = −Mtdt+
σ√
βn

d(Bt +B∗t ),

where Bt is an n×n matrices, which elements are standard real complex or quaternion Brownian

motions, for β = 1, 2 and 4 respectively. We consider the following system of n Itô equations:

dλit =
2√
nβ

dBi
t − λidt+

2

n

∑
j 6=i

dt

λjt − λit
, (6.1)

for i = 1, 2, ..., n. The entries M i,j
t i 6 j are then independent O-U processes. It is known

that the eigenvalues distribution of the previous system is given by (6.1) version of the Dyson

Brownian motion. In this case, since the law of the O-U process is absolutely continuous with

respect to Brownian motion in every entry, all the previous results concerning the existence of

the traces and the other properties are still valid a.s.

We observe that even if connected with classes of matrices for certain values of the parameter

β, the dynamics in (6.1) makes sense also for β > 1 (that corresponds to κ 6 8).

In the special cases , when one has the O-U matrix representation, then the analysis of the

Dyson Brownian motion, specifically the local ergodicity of the Dyson Brownian motion, gives

a tool for proofs of results in Random Matrix Theory. We cover this in more detail in the next

section.

We also cover the Local Ergodicity for the Dyson Brownian Motion, for β > 1.

6.2. The three steps strategy in the proof of universality. Let us first define Wigner matrices.

Definition 6.1. A Wigner matrix is a N ×N random Hermitian matrix H = H∗ whose entries

Hij satisfy the following conditions.

I (i) The upper-triangular entries (Hij : 1 6 i 6 j 6 N) are independent.

I (ii) For all i, j, we have E (Hij) = 0 and E |Hij |2 = N−1 (1 +O (δij))

I (iii) The random variables
√
NHij are bounded in any Lp space, uniformly in N, i, j.

The fast convergence to local equlibrium appears as one of the steps in the proof of the

Universality Conjecture in Random Matrix Theory. We refer the reader to [17] for more details.

In short, in [17] the analysis is performed for a Wigner matrix added with a matrix from the

Gaussian Orthogonal Ensemble (GOE). The analysis is performed in a ’three-step strategy’:
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Local semicircle law and delocalization of eigenvectors, Universality for the Gaussian Divisible

Ensemble (GDE) and Approximation by GDE, or alternatively continuity of the eigenvalues

under the matrix O-U process up to small times. Now, we give the details of these steps.

Step 1 can be phrased as ’Local semicircle law and delocalization of eigenvectors’ (rigidity

of the eigenvalues), and it states that the density of eigenvalues is given by the semicircle law

not only as a weak limit macroscopically, but also in a high probability at scales containing N ξ

eigenvalues, for all ξ > 0, where N is the size of the random matrix. Step 2 is the Universality

for Gaussian divisible ensembles (GDE). The GDE are matrices of the form Ht = e−t/2H0 +
√

1− e−tHG, where t > 0 is a parameter, H0 is a Wigner matrix and HG is an independent

GUE/GOE matrix. The parametrization of Ht is chosen so that Ht can be obtained by an

Ornstein-Uhlenbeck (O-U) process starting from H0. The aim of Step 2 is to prove the bulk

universality of Ht for t = N−τ for the entire range of 0 < τ < 1. In Step 3, one has the following

continuity of matrix O-U process: In Theorem 15.2 in [17] it is shown that the changes of the

local statistics in the bulk under the matrix O-U process flow, up to time scales t� N−1/2 are

negligible.

6.3. Local Ergodicity of the Dyson Brownian Motion. In this subsection we provide the details

of the Local Ergodicity of the Dyson Brownian motion.

Let us consider the density of the semicircle law

%sc(x) :=
1

2π

√
(4− x2)+.

Let us further define

nsc(E) :=

∫ E

−∞
%sc(x)dx.

We will say that γj is the classical location of the j-th eigenvalue

γj = n−1sc (j/N).

Let us consider the generator

LG =
N∑
i=1

1

βN
∂2i +

N∑
i=1

−1

2
λi +

1

N

(i)∑
j

1

λi − λj

 ∂i.

We consider the Dyson Brownian motion, i.e., dynamics of the eigenvalues λ = (λ1, λ2, . . . , λN )

of Ht that is Ht = e−t/2H0 +
√

1− e−tHG, with H0 Wigner Matrix and HG an independent
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matrix from a Gaussian ensemble. We write the distribution of λ of Ht at time t as ft(λ)µG(dλ).

We notice that Kolmorogov’s forward equation for the evolution of the density ft takes the form

∂tft = LGft. (6.2)

Let us further consider the following estimate.

A-priori estimate: There exists a ξ > 0 such that average rigidity on scale N−1+ξ holds, i.e.,

Q = Qξ := sup
06t6N

1

N

∫ N∑
j=1

(λj − γj)2 ft(λ)µG(dλ) 6 CN−2+2ξ (6.3)

with a constant C that is uniformly in N .

The main result on the Local Ergodicity of Dyson Brownian Motion states that if the a-priori

estimate from before is satisfied, then the local correlation functions of the measure ftµG are

the same as the corresponding ones for the Gaussian measure, µG = f∞µG, provided that t is

larger than N−1+2ξ.

When we have the O-U matrix representation, i.e. in the cases κ = 4, κ = 8 that correspond

to β = 2 (GUE) and β = 1 respectively, the probability distribution of the eigenvalues at the

time t, ftµG, is the same as that of the Gaussian divisible matrix

Ht = e−t/2H0 +
(
1− e−t

)1/2
HG,

where H0 is the initial Wigner matrix and HG is an independent standard GUE (or GOE)

matrix.

However, note that the next result is true for any β > 1, i.e for κ 6 8. Also, there is a

stronger result ( [30]), i.e. fixed energy universality for β = 1, that we plan to adapt for β = 2,

and use in that form in a future project,

For general β > 1, instead of eigenvalues, we think of an interacting particles system

(x1, ..., xN ) on the real line of which dynamics is described via the Dyson BM equations.

In general, the n-point correlation functions of the symmetrized probability measure ν are

defined by

p
(n)
ν,N (x1, x2, . . . , xn) :=

∫
RN−n

ν(x)dxn+1 . . . dxN , x = (x1, x2, . . . , xN ) .

Remark 6.2. Note that the eigenvalues are unlabeled when one studies the k-point correlations.

In the statements of the universality below the eigenvalues are unordered as well.
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In particular, when ν = ftdµG, one has

p
(n)
t,N (x1, x2, . . . , xn) = p

(n)
ftµG,N

(x1, x2, . . . , xn) .

We also use, as in [17], p
(n)
G,N for p

(n)
µG,N

. When considering the O-U matrix representation case

(i.e. β = 1, 2), one has the following result.

Theorem 6.3 (Theorem 12.4 in [17]). [Local ergodicity of DBM] Suppose that for some exponent

ξ ∈
(
0, 12
)
, the average rigidity, i.e. the a priori estimate (6.3), holds for the solution ft of the

forward equation (6.2) on scale N−1+ξ. Additionally, suppose that in the bulk the rigidity holds

on scale N−1+ξ even without averaging, i.e., for any κ > 0

sup
κN6j6(1−κ)N

|λj − γj | ≺ N−1+ξ

holds for any t ∈
[
N−1+2ξ, N

]
if N > N0(ξ, κ) is large enough. Let E ∈ (−2, 2) and b = bN > 0

such that [E − b, E + b] ⊂ (−2, 2). Then for any integer n > 1 and for any compactly supported

smooth test function O : Rn → R, we have, for any t ∈
[
N−1+2ξ, N

]
∣∣∣∣∫ E+b

E−b

dE′

2b

∫
Rn

dαO(α)
(
p
(n)
t,N − p

(n)
G,N

)(
E′ +

α

N

)∣∣∣∣ 6 N ε

[
N−1+ξ

b
+

√
1

bNt

]
‖O‖C1 , (6.4)

for any N sufficiently large, N > N0(n, ξ, κ).

In the same manner, the correlation functions of the equilibrium measure µ of the DBM, are

denoted by

p
(k)
µ,N (x1, x2, . . . , xk) :=

∫
RN−k

µ(x)dxk+1 . . . dxN

Following, [16], we have the following result for β > 1.

Theorem 6.4 (Theorem 2.1 of [16]). Let NI denote the number of eigenvalues in an interval

I ⊂ R. Suppose the initial density f0 satisfies Sµ (f0) :=
∫
f0 log f0dµ 6 CNm with some fixed

exponent m independent of N. Let ft be the solution of the forward equation (6.2). Suppose that

the following three assumptions are satisfied for all sufficiently large N

I For some a > 0 we have

Q 6 N−2a.

I There exist constants b > 0 and c > 0 such that

sup
t>0

∫
1

{
max

j=1,...N
|xj − γj | > N−b

}
ftdµ 6 exp [−N c] .
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I For any compact subinterval I0 ⊂ (−2, 2), and for any δ > 0, σ > 0 and n ∈ N there is a

constant Cn depending on I0, δ and σ such that for any interval I ⊂ I0 with |I| > N−1+σ

and for any K > 1, we have

sup
t>0

∫
1 {NI > KN |I|} ftdµ 6 CnK

−n.

Let E ∈ R such that |E| < 2 and let 0 < b < 2− |E|. There exists a constant ζ > 0, depending

only on a and b, such that, for any integer k > 1 and for any compactly supported continuous

test function O : Rk → R we have have

limN→∞
∫ E+b
E−b

dE′

2b

∫
Rk dα1 . . . dαkO (α1, . . . , αk)

× 1
%sc(E)k

(
p
(k)
t,N − p

(k)
µ,N

)(
E′ + α1

N%sc(E) , · · · , E
′ + αk

N%sc(E)

)
= 0

for t = N−ζ .

We use these results in the next sections, at the level of drivers of the multiple SLEs. The

goal is to translate this result via the multiple Loewener Differential Equation (LDE) to the

level of hulls/curves.

7 Results in [27] that need to be adapted to the multiple SLE curves

Lemma 7.1 (Lemma 6.1 in [27]). For each δ > 0 and T > 0 there exists a constant C(T, δ)

such that the following holds. Let hk(t, z), k = 1, 2 be the solutions of backward LDE with the

continuous driving terms (Wk(t))t∈[0,T ] , k = 1, 2, respectively. Then they satisfy

|h1 (T, z1)− h2 (T, z2)| 6 C(T, δ)
(
‖W1 −W2‖∞,[0,T ] + |z1 − z2|

)
,

for any z1, z2, such that Im zk > δ > 0.

For the proof of the previous lemma, one considers hk(t, z), k = 1, 2 be the solutions of the

backward LDE with the continuous driving terms (Wk(t))t∈[0,T ] , which we also consider to be

fixed. Moreover, one writes ψ(t) = h1 (t, z1)− h2 (t, z2). Then, one considers

∂tψ(t) = ζ(t)(ψ(t)−D(t)),

where ζ(t) = 2/ ((h1 (t, z1)−W1(t)) (h2 (t, z2)−W2(t))) and D(t) = W1(t)−W2(t).
.

Furthermore, ∂t

(
e−
∫ t
0 ζ(s)dsψ(t)

)
= −ζ(t)e−

∫ t
0 ζ(s)dsD(t) using an integrating factor. Hence

ψ(t) = e
∫ t
0 ζ(s)dsψ(0)−

∫ t

0
ζ(u)e

∫ t
u ζ(s)dsD(u)du.
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In order to obtain the result, on the right hand side it is considered the uniform estimate on

[0, T ] between the drivers.

In our case, we will consider different topology. Moreover, we will do the analysis for the mul-

tiple Loewner differential equation with simultaneous growth, as described in the Preliminaries

section.

Similarly, we have

Lemma 7.2. For each δ > 0 and T > 0 there exists a constant C(T, δ) such that the following

holds. Let gk(t, z), k = 1, 2 be the solutions of forward LDE with the continuous driving terms

(Wk(t))t∈[0,T ] , k = 1, 2, respectively

|g1 (T, z1)− g2 (T, z2)| 6 C(T, δ)
(
‖W1 −W2‖∞,[0,T ] + |z1 − z2|

)
,

for any z1, z2 such that Im gk (T, zk) > δ > 0.

Proof. The proof is similar to the proof of Lemma 6.1. The only difference is that we replace ψ(t)

by ψ(t) = g1 (t, z1)− g2 (t, z1) and ζ(t) by ζ(t) = −2/ ((g1 (t, z1)− W1(t)) (g2 (t, z2)−W2(t))) .

Then Ik is given as and bounded by Ik =
∫ t
0 2 | gk (s, zk)− Wk(s)|−2 ds 6 log Im zk

Im gk(t,zk)
6

log Im zk

max

{
δ,

√
((Im zk)

2−4t)
+
} , where a+ = max{a, 0}.

The final result that one gets in this form is the following.

Proposition 7.3 (Proposition 6.2. in [27]). Let K0 be a hull and G ⊂ H\K0 be a compact set.

Then there exists a constant C > 0 such that if if gk, k = 1, 2, are two Loewner chains such that

Kk(T ) ⊂ K0 for k = 1, 2, then

‖g1 − g2‖∞,[0,T ]×G 6 C ‖W1 −W2‖∞,[0,T ] .

Proof. The claim follows directly from Lemma 6.2

In our case, using the type of convergence (local ergodicity or fixed energy) we want to prove

with the same type of idea a Caratheodory, Hausdorff convergence at the level of curves/drivers.

8 First two main results

Let us start with the following result in [17], that guarantees that the Dyson Brownian motion

has a strong solution and the ordering is preserved for all times.
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Theorem 8.1 (Theorem 12.2. of [17]). Let the Weyl chamber be defined as before

Wn = {λ = (λ1, λ2, ..., λn) ∈ RN : λ1 < λ2 < .... < λN}.

Let β > 1 and suppose that the initial data satisfy λ(0) ∈ Wn. Then there exists a unique

(strong) solution to Dyson Brownian motion in the space of continuous functions (λ(t))t>0 ∈

C
(
R+, Σ̄N

)
. Furthermore, for any t > 0 we have λ(t) ∈ Wn and λ(t) depends continuously

on λ(0). In particular, if λ(0) ∈ Wn, i.e., the multiplicity of the initial points is one, then

(λ(t))t>0 ∈ C (R+,Wn) , i.e., this property is preserved for all times along the evolution.

Even though the results on the fast convergence to local equilibrium of the Dyson Brownian

motion are valid for all β > 1, i.e. κ 6 8, we focus on the regime κ 6 4, in order to work with

simple curves, for simplicity. We plan to study the case 8 > κ > 4 in a future project.

The next results use the statistics of the k-point correlations. This is a way to study the

statistics of unlabeled eigenvalues. These statistics can be used to define new observables for the

multiple SLE curves such as the probability to find k curves rooted on a real set (using that the

k-point correlations can be used to find the probability that a measurable set contains exactly a

given number of eigenvalues). Also, one can obtain the probability that there are no eigenvalues

in a given region. These quantities can be used to study in the future projects the convergence

of the discrete models to the continuum one.

Theorem 8.2. Let β > 2, i.e. κ 6 4. Let us consider N -multiple SLE curves up to the first

hitting time in the upper half-plane. Then, for any choice of initial conditions of Dyson BM,

respecting the assumptions of Theorem 6.4, we have that, for t > 1
Nζ , for some ζ > 0, for any

k > 1, the convergence of k-point correlations at the level of drivers, in the sense of (6.4), as

N →∞, gives the convergence of the k-marginals

PkN (gNt (z) ∈ AN , for z ∈ GN )→ µk(gt(z) ∈ A, for z ∈ G∞), (8.1)

(in a sense to be defined), as N → ∞, where µ is the equilibrium measure for the Dyson BM,

GN , G∞ ⊂ H, and AN , A are Borel sets.

Remark 8.3. Using a similar argument as the one in [21], one can obtain multiple SLE curves,

for κ 6 4, that do not touch each other until their reach the target. Then, in the case of simple

curves, we have that the result in the Carathéodory sense gives the result in the Hausdorff sense.

Proof. [Sketch]
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8.1. Control at the level of drivers.

I For t > N−ζ , the control on the drivers is given by the local ergodicity of the Dyson BM

for β > 1, i.e. κ 6 8 (see Theorem 6.4).

8.2. From the drivers to the hulls; adaptation to the multiple SLE curves and the work [25] .

I We adapt the results in Section 7 for any hulls to the multiple SLE case, especially Propo-

sition 7.3 by considering different topology at the level of drivers. Section 4.3 in [25],

especially after the equation (4.12), in [25] provides ideas for the iterated growth of mul-

tiple SLE. The same idea works in the simultaneous growth case.

I One can also use the result in Sec. 4.3 in [25], if assuming the usual Kemppainen-Smirnov

crossing conditions (see [28]). In Sec. 4.3 of [25], it is shown that weak convergence of the

iterated driving functions implies weak convergence of curves in the sup-norm (and thus

also Hausdorff and Carathéodory) topology. The same idea works in the simultaneous

growth case.

I In order to achieve the final result, we couple and compare the Dyson BM started from ran-

dom initial conditions that respect the conditions of Theorem 6.4, and Dyson BM started

from the equilibrium measure and then use the multiple Loewner Differential Equation to

perform the analysis from the drivers to the hulls.

In the special case κ = 4 using the elements of the proof of the Universality in [17], one

obtains the following result. Given the connection with the O-U matrix representation, then

one can get also control over the dynamics over time t 6 N−ζ , compared with the general case

β > 1, where the control is obtained in time, only after t > N−ζ .

Theorem 8.4. Let κ = 4. Let us consider N -multiple SLE curves in the upper half-plane to the

first hitting time. Then, for any choice of initial conditions of the Dyson BM, respecting the

assumptions of Theorem 6.4, we have that, for any k > 1, the convergence of k-point correlations

at the level of drivers, in the sense of (6.4), as N →∞, gives the convergence of the k-marginals

PkN (gNt (z) ∈ AN , for z ∈ GN )→ µk(gt(z) ∈ A, for z ∈ G∞), (8.2)

14



(in a sense to be defined), as N → ∞, where µ is the equilibrium measure for the Dyson BM,

GN , G∞ ⊂ H, and AN , A are Borel sets.

Corollary 8.5 (Corollary of Theorem 8.4). One corollary of the result in [15] gives that the

probability to find no eigenvalue in a certain interval that is precisely stated in the paper, after

averaging in the interval of size N−1+δ around a point u0 ∈ (−2, 2) is the same as in the GUE

case.

Proof. [Sketch of the proof for the κ = 4 case]

The proof is similar with the one of Theorem 8.2, with the following difference.

8.3. Control at the level of drivers.

I For t > N−ζ

As before, the control on this regime, it is obtained via the Local Ergodicity of the Dyson

BM driver (see Theorem 6.4).

I For t 6 N−ζ

Since κ = 4, i.e. β = 2, we use the third step in the proof of the Universality in Random

Matrix Theory (see Section 6.2). Using the continuity of the matrix O-U process we show

that the changes of the local statistics in the bulk under the matrix O-U process flow, up

to time scales t� N−1/2 are negligible (in the sense of Theorem 15.2 in [17]).

8.4. From the drivers to the hulls; adaptation to the multiple SLE curves and the work [25].

The next steps of the proof, i.e. the analysis from the drivers to the hulls and the coupling

argument, are done in the same manner as the previous result.

Corollary 8.6 (Local Independence on initial conditions of the asymptotic multiple SLE growth

model). Theorem 8.2 can be interpreted as a local independence on initial conditions that respect

certain assumptions, for the growth model of N SLE curves, as N →∞, in time less than N−ζ ,

for some ζ > 0. These type of results are useful in the context of study of the scaling limits of

Random Growth Models (see also [34], [35]).
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9 Updated strategy to prove both main results, Theorem 8.2 and The-

orem 8.4

Let z ∈ GN compacts, such that gVt (z) and gBt (z) has no blow-up in finite time. Let us couple

the following simultaneous growth multiple Loewner chains

dgVt (z) =
1

N

N∑
i=1

2

gVt (z)− V i
t

dt,

dgBt (z) =
1

N

N∑
i=1

2

gBt (z)−Bi
t

dt.

In the previous formulas, V i
t are jointly distributed such that the assumptions of the fast

relaxation to local equilibrium of Dyson Brownian Motion are satisfied. The second pair of

multiple drivers Bi
t are jointly distributed according to the equilibrium measure of the Dyson

Brownian motion (i.e. the second dynamics starts directly from the equilibrium).

Equivalently, we write

NdgVt (z) =
N∑
i=1

2

gVt (z)− V i
t

dt,

NdgBt (z) =
N∑
i=1

2

gBt (z)−Bi
t

dt.

We have

d(gVt (z)− V 1
t ) + d(gVt (z)− V 2

t ) + · · ·+ d(gVt (z)− V N
t ) =

N∑
i=1

[(
2

gVt (z)− V i
t

)
− dV i

t

]
,

and similarly

d(gBt (z)−B1
t ) + d(gBt (z)−B2

t ) + · · ·+ d(gBt (z)−BN
t ) =

N∑
i=1

[(
2

gBt (z)− V i
t

)
− dBi

t

]
.

We define g̃Vit := gBt (z)− V i
t , i ∈ 1, . . . , N and g̃Bit := gBt (z)−Bi

t, i ∈ 1, . . . , N .

Then, the equations become

N∑
i=1

g̃Vit =

N∑
i=1

(∫ t

0

2

g̃Vit
dt− V i

t

)
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and
N∑
i=1

g̃Bit =

N∑
i=1

(∫ t

0

2

g̃Bit
dt−Bi

t

)
.

Let us further consider

N∑
i=1

g̃E
′,Vi

t =
N∑
i=1

(∫ t

0

2

g̃Vit
dt−

(
E′ +

V i
t

Nρsc(E)

))

and
N∑
i=1

g̃E
′,Bi

t =
N∑
i=1

(∫ t

0

2

g̃Bit
dt−

(
Bi
t +

E′

Nρsc(E)

))
.

We are interested in estimating

∫ E+b

E−b

dE′

2b
E

[
F

(
N∑
i=1

g̃E
′,Vi

t

)]
−
∫ E+b

E−b

dE′

2b
Eµ

[
F

(
N∑
i=1

g̃E
′,Bi

t

)]
,

as N →∞, for F test functions.

Then, we have∫ E+b

E−b

dE′

2b
E

[
F

(
N∑
i=1

g̃E
′,Vi

t

)]
−
∫ E+b

E−b

dE′

2b
Eµ

[
F

(
N∑
i=1

g̃E
′,Bi

t

)]

=

∫ E+b

E−b

dE′

2b

(
E

[
F

(
N∑
i=1

∫ t

0

2

g̃E
′,V

t (z)
dt

)])
−

(
Eµ

[
F

(
N∑
i=1

∫ t

0

2

g̃E
′,B

t (z)
dt

)])

+

∫ E+b

E−b

dE′

2b

(
E

[
F

(
N∑
i=1

(
E′ +

V i
t

Nρsc(E)

))]
− Eµ

[
F

(
N∑
i=1

(
E′ +

Bi
t

Nρsc(E)

))])
.

The convergence of the second term on the RHS, as N → ∞ (when considering the drivers

written as in the Local Ergodicity result, Theorem 6.4), follows from Theorem 6.4.

For the first term in the RHS, we use the information in the sigma-algebra of the k-point

correlations, for any k > 1, to obtain the convergence. In our case, we have the convergence of

the k-point correlations in the averaged sense. Note that in [38], the universality of β-ensembles

is proved without further averaging. However, in that case there is no dynamics as the system

is already in equlibrium. In that case, it is direct to use the information on the sigma-algebra

of the k-point correlations in the analysis.

In our case, we check that the averaging of the k-point correlations is enough to give the

information needed to obtain the averaging convergence of the integrals, i.e. the first terms in

the RHS.
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Another strategy, is to consider a Random Matrix Model in which we add a random vari-

able to each entry sampled from a distribution in order to obtain the averaging effect via the

displacement of the window of energies, and smooth out the density of the eigenvalues (to make

the density of the eigenvalues smoother than in the case of Bernoulli-type entries, for example).

For the general case β > 2, in order to obtain the estimate at the level of hulls/curves, after

t > N−ζ , for some ζ > 0, one can study the following form of the multiple Loewner Differential

Equation. Let us fix some deterministic time s > 0, and let g̃t be the solution of the Loewner

equation with driving functions Ṽ i
t = V i

s+t, t > 0,∀i ∈ 1, · · ·N. We omit in the notation the

superscripts in order to not overburden the reader. This solution can be obtained by gs+t ◦ g−1s .

∂tgs+t ◦ g−1s (z) =
1

N

N∑
i=1

2

gs+t ◦ g−1s (z)− V i
s+t

=
1

N

N∑
i=1

2

gs+t ◦ g−1s (z)− Ṽ i
t

and gs ◦ g−1s (z) = z. By the uniqueness of solution of the equation above, we have g̃t(z) =

gs+t ◦ g−1s (z). We can choose s = 1
Nζ , for ζ > 0 as in Theorem 6.4 and study this dynamics.

For β = 2, using the control on times t ∈ [0, N−ζ ], there is no need to consider the above

chain.

In the case, there is no further averaging (for example, by a stronger result than Theorem

6.4), then the main estimate from this section, will be obtained in a direct manner without the

further averaging in the energy windows.

[To be completed]

10 Brownian carousel and the local statistics of the multiple SLE curves

It is known that when β takes the special values β = 1, 2, 4, the correlation functions can

be explicitly expressed. Thus, the analysis of the correlation functions relies heavily on the

asymptotic properties of the corresponding orthogonal polynomials.

For non-classical values of β, i.e., β /∈ {1, 2, 4}, there is no simple expression of the correlation

functions in terms of orthogonal polynomials. In [42] it is proved that in the Gaussian case,

i.e., when V is quadratic, the measure describes eigenvalues of tri-diagonal matrices. This idea

allowed to establish, between others, the local spacing distributions of the Gaussian β -ensembles

in [42].

Specifically, the Brownian carousel studied in [42] gives information about the local statistics
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of the eigenvalues for the general β > 1. We study the consequences of this representation at

the level of drivers to the level of multiple SLE curves.

Moreover, in another direction of study, we want to use that in [7], the authors prove that

the local spacing distributions are independent of the potential V for certain class of V , for any

β > 1.

[to be completed]

11 Starting from stationarity

In the previous section, we argued that given a range of random initial conditions, then the Dyson

BM reaches in fast time the local equlibruim (’forgetting very fast the initial conditions’).

In a different project, we plan to start directly from stationarity the Dyson Brownian motion

as a driver of the multiple SLE curves. Computations involving the Dyson BM and the LDE

will give new results in this case as well, as the flow of the Dyson BM at the level of drivers will

leave the distribution invariant. Then one will get directly the uniform control over time that is

needed for the Carathéodory result. [to be completed with the details].

12 General β Ensembles Universality and multiple SLE curves, a third

result

In Random Matrix Theory literature there are results concerning the Universality of the general

β ensembles (see [7], [38], [4], more references to be added). In this case, there is no relaxation to

local equlibruim as in the previous sections, as the drivers are already in equilibrium. However,

the universality here is understood in terms of the potential W in the Dyson Brownian Motion

dynamics, i.e. we consider

dλit =
2√
nβ

dBi
t −

W ′(λit)

2
dt+

2

n

∑
j 6=i

dt

λjt − λit
, (12.1)

for i = 1, 2, ..., n.

When W (x) = x2

2 , then we have the Dyson Brownoan motion corresponding to the Gaussian

ensembles, that we have considered before. The results in the Random Matrix Theory literature

discuss the class of potentials W that one can consider in order for the local statistics to be the

same with the Gaussian potential W (x) = x2

2 .
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Adopting the same strategy as in the previous section, we compare multiple Loewner chains

with drivers given by the generalized Dyson dynamics (12.1) started from equilibirium, with

W assuming the conditions in [38], [4] or [7], and couple the dynamics with the one obtained

from the Gaussian potential W (x) = x2

2 . Then, one can obtain a convergence result adopting

the same strategy as before, with even an easier argument using the results in [38], as there

will be no further averaging in the window of E′ occuring. Then, using the convergence of the

k-point correlations (without averaging) and the sigma-algebra they generate, we obtain also

the convergence in the drift part of the multiple Loewner dynamics. Then, having control of

both the drift and the drivers, we obtain the result at the level of the multiple SLE.

As a next step, we want to undersand the models corresponding to the classes W of potentials

that are covered in [7], [38] and [4]. Also, we want to undestand if there are discrete models

of whose drivers can be described with some specific choices of W that are covered in [4], [38]

and [7]. One reference for this direction it is Section 5, Theorem 5.1 in [41]. An idea for proof it

is that if the convergence to multiple SLE on a certain lattice is already established, then moving

from this lattice to another one (in a certain class) is similar to adding a drift in the Dyson BM,

that by the Universality of General β Ensembles keeps the same statistics asymptotically as with

the Gaussian potential. In Theorem 5.1 of [41] the dynamics of drivers is explicit and depends

on the angles of the curve on the lattice. By changing the lattice, one modifies these angles.

This can be expressed as a perturbation of a model that already converged to multiple SLE. The

current development in this direction consists of checking if some specific perturbations can be

covered by the classes of potentials considered in the proof of the Universality of the General β

Ensembles.

12.1. Sketch of the result and of the proof in this case.

Theorem 12.1. Let β > 2, i.e. κ 6 4. Let us consider N -multiple SLE curves up to the first

hitting time in the upper half-plane. Then, we have that, for any k > 1, the convergence of

k-point correlations at the level of drivers for potentials W respecting the assumptions in [4]

or [38], as N →∞, gives the convergence of the k-marginals

PkW (gNt (z) ∈ AN , for z ∈ GN )→ µkWG
(gt(z) ∈ A, for z ∈ G∞), (12.2)

(in a sense to be defined), as N → ∞, where µWG
is the measure corresponding to Gaussian

potential WG(x) = x2

2 , GN , G∞ ⊂ H, and AN , A are Borel sets.
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Remark 12.2. To obtain an averaged version of the result, the analysis in [7] it is very useful.

Sketch of the proof of 12.1. We couple

N∑
i=1

g̃W,Vit =

N∑
i=1

(∫ t

0

2

g̃W,Vit

dt−
(
E +

V i
t

Nρsc(E)

))

and
N∑
i=1

g̃WG,Bi
t =

N∑
i=1

(∫ t

0

2

g̃WG,Bi
t

dt−
(
E +

Bi
t

Nρsc(E)

))
.

The drivers of the first chain correspond to the equilibrium measure of the Dyson BM with

potential W as in [38] or [4] (see also [7]).

We are interested in estimating

E

[
F

(
N∑
i=1

g̃W,Vit

)]
− EµWG

[
F

(
N∑
i=1

g̃WG,Bi
t

)]
,

as N →∞, for F test functions.

Then, we have

E

[
F

(
N∑
i=1

g̃W,Vit

)]
− EµWG

[
F

(
N∑
i=1

g̃WG,Bi
t

)]

=

(
E

[
F

(
N∑
i=1

∫ t

0

2

g̃W,Vt (z)
dt

)])
−

(
EµWG

[
F

(
N∑
i=1

∫ t

0

2

g̃WG,B
t (z)

dt

)])

+

(
E

[
F

(
N∑
i=1

(
E +

V i
t

Nρsc(E)

))]
− EµWG

[
F

(
N∑
i=1

(
E +

Bi
t

Nρsc(E)

))])
.

To understand the convergence of the second term on the RHS, as N → ∞, we use [4]

or [38]. For the first term in the RHS, we use the information in the sigma-algebra of the

k-point correlations, for any k > 1.

[to be completed]

12.2. A different statistics: the gaps between the drivers. Applications to the geometry of the

multiple SLE curves.

Let 0 6 s 6 t, and define

γ̃s(t) = gs(γ(t)).

In the case of one SLE curve, we have the following result.
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Lemma 12.3 (Lemma 6.15 of [27]). Let W (s), s ∈ [0, t], be the driver in the Loewner Differential

Equation. Then, we have that

1

2
sup
u∈[s,t]

|W (u)−W (s)| − 2
√
|s− t| 6 sup

u∈[s,t]
| Re γ̃s(u)−W (s)| 6 sup

u∈[s,t]
|W (u)−W (s) | .

This lemma gives lower and upper bounds for the width of a box where the curve is observed

in a given time interval. A similar estimate can be obtained for multiple curves. This can be used

to obtain estimates on the difference between the neighborhood curves. This approach is further

combined with the gaps statistics from RMT in order to provide new geometric information on

the multiple SLE curves. This idea can be applied, in particular, for the multiple SLE model

started from the Gaussian distribution. In the future, the analysis can be extended using the

gap universality of the Dyson Brownian motion ( [17]) that we discuss in the following.

Let us first consider the a-priori estimate, with the notation before: there exists ξ > 0 such

that

Q := sup
06t6N

1

N

∫ N∑
j=1

(λj − γj)2 ft(λ)µG( dλ) 6 CN−2+2ξ,

with a constant C uniformly in N . We also assume that after time 1/N the solution of the

equation

∂tft = LGft, t > 0

satisfies the following entropy (Sµ) bound

Sµ
(
f1/N

)
6 CNm,

for some fixed m. In Lemma 14.6 in [17] it is shown that for β = 1, 2 this bound holds.

Theorem 12.4 (Theorem 14.1 of [17] (Gap universality of the Dyson Brownian motion for short

time)). Let β > 1 and assume the a-priori estimate and the entropy bound hold. Fix n > 1 and

an array of positive integers, m = (m1,m2, . . . ,mn) ∈ Nn+. Let G : Rn → R be a bounded smooth

function with compact support and define

Gi,m(x) := G
(
N (xi − xi+m1) , N (xi+m1 − xi+m2) , . . . , N

(
xi+mn−1 − xi+mn

))
Then for any ξ ∈

(
0, 12
)

and any sufficiently small ε > 0, independent of N, there exist constants

C, c > 0, depending only on ε and G, such that for any J ⊂ {1, 2, . . . , N −mn} we have

sup
t>N−1+2ξ+ε

∣∣∣∣∣
∫

1

|J |
∑
i∈J
Gi,m(x) (ft dµ− dµ)

∣∣∣∣∣ 6 CN ε

√
N2Q

|J |t
+ Ce−cN

ε
.
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We will use the result for the neighboring gaps only, i.e. we will have the case m1 = 1,

m2 = 2, . . . ,mn = n.

[to be completed]

13 Multiple Radial SLEs on the unit disk and the Circular β Ensembles

An important paper in this direction is the work of Cardy in [8]. In [8] it is introduced the

framework for this type of analysis but the analysis in the paper leads to a different exponent

β = 4
κ . However, there is a corrected version published later by Cardy where the factor β = 8

κ

is obtained.

13.1. Brief summary on the project on the multiple radial SLE and Circular Dyson Brownian

motion with Vivian Healey. In this section, we give a brief description of the work in [21], in

order to connect the main result with a theorem on the smallest gap distribution of the Circular

Ensembles (see [18]). This joint project with Vivian Healey is detached from the previous

independent work.

Let a = 2
κ . We fix positive integer n and let θ =

(
θ1, . . . , θn

)
with θ1 < · · · < θn < θ1 + π.

We further consider zj = exp
{

2iθj
}

and z =
(
z1, . . . , zn

)
. Then, z1, . . . , zn are n distinct

points on the unit circle ordered counterclockwise. Let γ =
(
γ1, . . . , γn

)
be an n-tuple of

curves γj : (0,∞) → D\{0} with γj(0+) = zj and γj(∞) = 0. We write γjt for γj [0, t] and

γt =
(
γ1t , . . . , γ

n
t

)
.

In the following, we introduce some notations from [21].

I Let Dj
t , Dt be the connected components of D\γjt ,D\γt, respectively, containing the origin.

Let gjt : Dj
t → D, gt : Dt → D be the unique conformal transformations with

gjt (0) = gt(0) = 0, (gjt )
′(0), g′t(0) > 0

I Let T be the first time t such that γjt ∩ γkt 6= ∅ for some 1 6 j < k 6 n. Define

zjt = exp
{

2iθjt

}
by gt(γ

j(t)) = zjt . Let zt =
(
z1t , . . . , z

n
t

)
,θt =

(
θ1t , . . . , θ

n
t

)
. For ζ ∈ H,

define ht(ζ) to be the continuous function of t with h0(ζ) = ζ and

gt(e
2iζ) = e2iht(ζ).
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Note that if ζ ∈ R so that e2iζ ∈ ∂D, we can differentiate with respect to ζ to get

|g′t(e2iζ)| = h′t(ζ).

I More generally, if t = (t1, . . . , tn) is an n-tuple of times, we define γt, Dt, gt. We let

α(t) = log g′t(0).

We will say that the curves have the common (capacity a-) parameterization, if for each t

∂jα(t, t, . . . , t) = 2a, j = 1, . . . , n

In particular,

g′t(0) = e2ant.

The common parametrization terminology in [21] is equivalent with the simultaneous growth

terminology in [22] .

Proposition 13.1 (Proposition 3.1 in [21]). [Radial Loewner equation] If γt has the common

parameterization, then for t < T, the functions gt, ht satisfy

ġt(w) = 2agt(w)
n∑
j=1

zjt + gt(w)

zjt − gt(w)
, ḣt(ζ) = a

n∑
j=1

cot
(
ht(ζ)− θjt

)
If ∂Dt contains an open arc of ∂D including w = e2iζ , then

∣∣g′t(w)
∣∣ = exp

−a
∫ t

0

n∑
j=1

csc2
(
hs(ζ)− θjt

)
ds


In what follows next, we distinguish between three families of measures (that are being

sequentially obtained one from another via tilting with some martingales).

I P,E will denote independent SLEκ with the common parameterization;

I P∗,E∗ will denote locally independent SLEκ;

I P, E will denote n -radial SLEκ.

Define

Fα(θ) =
∏

16j<k6n

∣∣∣sin(θk − θj)∣∣∣α .
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Let P denote the measure on n independent radial SLEκ curves from θ0 to 0 with the a

-common parameterization.

In Section 3.2, of [21], it is obtained P∗ from P by tilting by a P -local martingale Mt. After

that, it is obtained P from P∗ by tilting by a P∗ -local martingale Nt,T and then letting T →∞.

Equivalently, it is obtained P from P by tilting by Ñt,T := MtNt,T and letting T → ∞, where

all the martingales described above are explicit in [21].

Let Ljt = Ljt (γt) be the set of loops ` with s(`) < sj(`) and s(`) 6 t. Define

Lt = It exp

c

2

n∑
j=1

mD

(
Ljt

)
Here It is the indicator function that γjt ∩ γk = ∅ for j 6= k.

Theorem 13.2 (Theorem 3.12. of [21]). Let 0 < κ 6 4. Let t > 0 be fixed. For each T > t, let

µT = µT,t denote the measure whose Radon-Nikodym derivative with respect to P is

LT
Eθ0 [LT ]

Then as T →∞, the measure µT,t approaches P with respect to the variation distance. Further-

more, the driving functions zjt = e2iθ
j
t satisfy

dθjt = 2a
∑
k 6=j

cot
(
θjt − θkt

)
dt+ dW j

t ,

where W j
t are independent standard Brownian motions in P.

One of the essential identities in the proof of the above theorem is the following

dµT,t/dPt
dPt/dPt

= 1 +O
(
e−u(T−t)

)
.

The right-hand side dependes on T but also inside the O notation, there is an N dependence,

that we will make explicit. The previous result,it is proved for fixed N , where N is the number

of curves. In order to apply results from Random Matrices, we are interested in the asymptotic

in N . In our case, in the previous expression, we take T and N simultaneous to +∞, in order

to use the next result from Random Matrix Theory (that is a direct consequence of the main

result in [18]).
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Corollary 13.3 (Corollary 1 of [18]). Let’s denote mk as the k-th smallest gap, and

τk = n(β+2)/(β+1) × (Aβ/(β + 1))1/(β+1)mk,

with Aβ an explicit factor in β. Then, for any bounded interval A ⊂ R+, we have

lim
n→+∞

P (τk ∈ A) =

∫
A

β + 1

(k − 1)!
xk(β+1)−1e−x

β+1
dx

In particular, the limiting density function for τ1 is

(β + 1)xβe−x
β+1

.

One of the main goals of the project is to use the previous result from Random Matrix

Theory literature concerning the distribution of the smallest gap in the case of general Circular

Ensembles, to obtain new geometric information on the multiple SLE curves.

Another possibility that we investigate is to start from stationarity and perform computations

using the equilibrium measure of the Dyson BM and the simultaneous growth multiple Loewner

Differential Equation.

14 Future projects

14.1. Bringing tools from Machine Learning (ML): One curve case. In Machine Learning, ap-

proximation of an intractable integration is often achieved by using the unbiased Monte Carlo

estimator, but the variances of the estimation are generally very large. Control variates ap-

proaches are well-known to reduce the variance of the estimation. This method was successfully

applied to specific diffusion processes ( [19]) in order to obtain reduced-variance estimations of

functionals of them. Diffusion processes appear very often in SLE computations and reduced-

variance estimations potentially will bring new insights in the theory. I outline a few possible

directions below, many expected to appear as the exploration continues.

I 1)Consider |h′s(z)|, where hs(z) are time-changed backward SLE maps. Moments of these

quantities are studied in order to prove the existence of the SLE trace (see [27]). This

quantity can be re-expressed using functionals of the form exp(2s−4
∫ s
0 sin2(arg(hu(z))du)

(see [27]). Obtaining low-variance estimations for this functional for stochastic drivers

of Loewner evolution that are ’close’ to Brownian Motion (but not Brownian motion
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itself) will bring new tools to explore random Loewner curves beyond the Brownian and

martingale machinery.

I 2) Also in a different direction, even in the Brownian driver case, an interesting object to

study is
∫ t
0 dt/y

2
t , where yt is the imaginary part of the backward Loewner maps. This

functional is important in order to understand a fundamental quantity: the law of the SLE

tip at a fixed time. We plan to understand expected value, variance and higher moments of

this quantity in order to understand it’s asymptotic behavior (that will resolve a conjecture

on the law of the SLE trace at a fixed time).

I 4) Perform the Remez algorithm to obtain the mini-max polynomial that optimally ap-

proximates the Brownian driver. This approach combined with the algorithm simulating

Loewner curves ( [40]) will give an optimal approach on the simulation of the SLE traces

problem. Moreover, in general, I want to define and study a randomized version of Remez

algorithm with the goal to obtain faster the optimal approximation polynomial. The latter

project is a general one and is of interest for ML community and beyond.

I Also in a different direction, an interesting unresolved (to the best of my knowledge)

problem is a Law of Iterated Logarithm for the SLE curves. A possible first step in this

direction is to obtain a low-variance estimate for functionals of the form E[f(gt(z)−q(t))],

where gt(z) are the forward SLE maps and q(t) is a deterministic function (that describes

the possible envelope). The exploration can continue with other functionals that capture

the geometry of the curves.

I All these questions have natural extensions in the multiple SLE setting. In order to

implement optimal approximations of the multiple SLE curves we foresee the use of the

neural networks (given the multi-dimensionality, i.e. number of curves, of the problem).

14.2. Tools from ML: Multiple curves case. In this subsection, we highlight a specific high-

dimensional approximation method that we plan to use: the Random Batch Method (RBM).

These methods are motivated by the mini-batch methods from Machine Learning. In [23] a

Random Batch method (RBM-1) is studied for interacting particle systems with applications

to the Dyson Brownian motion (β = 1). In this paper, it is proved that under suitable condi-

tions on the external potential, interaction force and batch size, that the RBM-1 is converging
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with a numerical error depending only on the time-step and independent of N (the number

of particles). The result gives a Wasserstein norm convergence of the laws of the marginals of

the approximation and the true interacting particle dynamics. I plan to extend this method

to obtain the result for the marginals of the multiple SLE curves, especially the extreme ones,

where the Tracy-Widom distribution as well as the Airy process will appear.

14.3. Further directions to investigate in the Multiple Chordal SLE case.

I 0) Perform the analysis and obtain the corresponding result for 8 > κ > 4.

In this context, we have the following lemma that establishes a connection between the

parameters corresponding to SLE duality and the corresponding one in the β ensembles.

Lemma 14.1. Let κ, κ′ ∈ R+ and let β = 8
κ and β′ = 8

κ′ . Then, the relation β′ = β
4 is

equivalent with the κ duality in SLEκ theory, i.e. κ′ = 16/κ.

Proof. Let β = 8/κ and β′ = 8/κ′. Then, β = 4/β′ is equivalent with 8/κ = 4κ′/8 = κ′/2.

Thus, κ′ = 16/κ.

We want to use the duality results of SLE Theory to obtain some new information about

results in Random Matrix Theory.

I 1) Use the Fixed energy Universality proof in [30] to redo the proof for κ = 4 . Then, the

fixed energy result for κ = 4, it implies the averaging result, and then obtains the main

results in this draft in a stronger form.

I 1.b) Provide the same analysis using the universality at the edge (Theorem 18.7 in Section

18.4 of [17]) (note that is not formulated in the averaged sense) and Theorem 17.1 in [16]

for the largest eigenvalue. A similar approach will give new results.

I 2) An important model in which one can consider the simultaneous and non-simultaneous

growth (more relevant): Consider in the unit disk the +− alternating boundary conditions

on half of the circle and + on the other half of the circle. Consider the multiple SLEs in

this context and pass to the hydrodynamic limit. Then the outer boundary of the limiting
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shape behaves like an interface between 0 (all the signs on one side cancel) and + (see

also [13]).

I 3) One direction to investigate is the implication of the result for the multiple SLE curves

in CFT, using the work in [8].

I 4) Use the extreme gaps result proved in the work [2] along with multiple curves versions

of the lemmas in the previous section and obtain the geometric information about the

multiple SLE curves (using information on the time dynamics of the smallest and the

biggest gap).

I 5) Study the reversibility of the Dyson Brownian motion dynamics and study similar

questions in the context of multiple backward SLE (the time reversal of the multiple

SLEs).

I 6) Use the β-ensembles universality result in [7] proof, to compare general potentials with

the typical Gaussian potential at the level of drivers, and understand the impact that it

has on the geometry of the curves/hulls.

I 7) Using the β-Tracy-Widom distribution about the fluctuations of the top eigenvalue, we

can obtain some geometric information about the dynamics of the extremal SLE curve (i.e.

the curve that grows from the extremal eigenvalue), as well as obtain some comparison

between the dynamics of the extremal SLE curve, i.e. the one that grows from the position

of the top eigenvalue, and the dynamics of some concrete curve (such as a tilted /straight

line) also growing from the position of the top eigenvalue.

I 8) We also plan to use the connection between TASEP large time limit with Tracy-Widom

( [24]). In general, there is no link at the moment (that I know about) between the particle

systems scaling limits and the SLE curves. We plan to obtain some results that link some

the asymptotic behavior of the extreme SLE curve with some results about TASEP. In

addition, we plan to establish further the connection between multilevel TASEP, Warren

process and multiple SLE (see [20]).

I 9) Connect the development in this direction presented in this draft with the convergence

and conformal invariance of discrete models coming from planar Statistical Physics on

various lattices ( [28], [41]).
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14.4. Main directions to be studied in the Multiple Radial SLE case.

I 1) One direction is to focus on the critical case κ = 4. We plan use techniques and results

about the smallest gap distribution obtained in [2] in the case of the CUE (a particular

case of the result in [18], for κ = 4) and obtain new information on the critical case.

I 2) We plan to obtain estimates on the geometry of the hulls/curves when one starts from

the stationary measure directly.

I 3) To check another direction: we plan to improve the topology with the estimates on

difference between curves as in [40].
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