Convergence in High Probability of the Quantum Diffusion in a Random Band Matrix Model Project supervised by Prof. Antti Knowles- ETH Zürich

Vlad Margarint

Dept. of Mathematics, University of Oxford vlad.margarint@maths.ox.ac.uk

11 July 2016

Overview

(1) Introduction of the Model
(2) Main Result
(3) Sketch of the Proof

- Graphical Representation
- Estimates and Combinatorics
- Truncation
(4) References

Introduction of the model

Preliminaries

Introduction of the model

Preliminaries

- Let \mathbb{Z}^{d} be the infinite lattice with the Euclidean norm $|\cdot|_{\mathbb{Z}^{d}}$ and let M the number of points situated at distance at most $W(W \geq 2)$ from the origin, i.e.

$$
M=M(W)=\mid\left\{x \in \mathbb{Z}^{d}: 1 \leq|\cdot|_{\mathbb{Z}^{d}} \leq W\right\}
$$

Introduction of the model

Preliminaries

- Let \mathbb{Z}^{d} be the infinite lattice with the Euclidean norm $|\cdot|_{\mathbb{Z}^{d}}$ and let M the number of points situated at distance at most $W(W \geq 2)$ from the origin, i.e.

$$
M=M(W)=\mid\left\{x \in \mathbb{Z}^{d}: 1 \leq|\cdot|_{\mathbb{Z}^{d}} \leq W\right\}
$$

- For simplicity we consider throught the proof a d-dimensional finite periodic lattice $\Lambda_{N} \subset \mathbb{Z}^{d}(d \geq 1)$ of linear size N equipped with the Euclidean norm $|\cdot|_{\mathbb{Z}^{d}}$. Specifically, we take Λ_{N} to be a cube centered around the origin with side length N, i.e.

$$
\Lambda_{N}:=([-N / 2, N / 2) \cap \mathbb{Z})^{d}
$$

Introduction of the Model

Preliminaries

- In order to define the random matrices H with band width W in our model, let us first consider

$$
S_{x y}:=\frac{\mathbf{1}(1 \leq|x-y| \leq W)}{(M-1)}
$$

Introduction of the Model

Preliminaries

- In order to define the random matrices H with band width W in our model, let us first consider

$$
S_{x y}:=\frac{\mathbf{1}(1 \leq|x-y| \leq W)}{(M-1)}
$$

We define the random band matrix $\left(H_{x y}\right)$ through

$$
H_{x y}:=\sqrt{S_{x y}} A_{x y},
$$

where $\left(A_{x y}\right)$ is Hermitian random matrix whose upper triangular entries $\left(A_{x y}: x \leq y\right)$ are independent random variables uniformly distributed on the unit circle $\mathbb{S}^{1} \subset \mathbb{C}$.

Introduction of the Model

Preliminaries

- In order to define the random matrices H with band width W in our model, let us first consider

$$
S_{x y}:=\frac{\mathbf{1}(1 \leq|x-y| \leq W)}{(M-1)}
$$

We define the random band matrix $\left(H_{x y}\right)$ through

$$
H_{x y}:=\sqrt{S_{x y}} A_{x y},
$$

where $\left(A_{x y}\right)$ is Hermitian random matrix whose upper triangular entries ($A_{x y}: x \leq y$) are independent random variables uniformly distributed on the unit circle $\mathbb{S}^{1} \subset \mathbb{C}$.

- Note that the entries $H_{x y}$ in the random band matrix H are indexed by x and y which are indices of points in Λ_{N}.

Introduction of the Model

- Let us consider also the function

$$
P(t, x)=\left|\left(e^{-i t H / 2}\right)_{0 x}\right|^{2},
$$

that describes the quantum transition probability of a particle starting in 0 and ending in position x after time t.

Introduction of the Model

- Let us consider also the function

$$
P(t, x)=\left|\left(e^{-i t H / 2}\right)_{0 x}\right|^{2},
$$

that describes the quantum transition probability of a particle starting in 0 and ending in position x after time t.

- For $\kappa>0$, we introduce the macroscopic time and space coordinates T and X, which are independent of W, and consider the microscopic time and space coordinates

$$
\begin{aligned}
t & =W^{d \kappa} T \\
x & =W^{1+d \kappa / 2} X
\end{aligned}
$$

Introduction of the Model

- Let us consider also the function

$$
P(t, x)=\left|\left(e^{-i t H / 2}\right)_{0 x}\right|^{2},
$$

that describes the quantum transition probability of a particle starting in 0 and ending in position x after time t.

- For $\kappa>0$, we introduce the macroscopic time and space coordinates T and X, which are independent of W, and consider the microscopic time and space coordinates

$$
\begin{aligned}
t & =W^{d \kappa} T \\
x & =W^{1+d \kappa / 2} X
\end{aligned}
$$

- Given $\phi \in C_{b}\left(\mathbb{R}^{d}\right)$, we define the main quantity that we investigate by

$$
Y_{T, \kappa, W}(\phi) \equiv Y_{T}(\phi):=\sum_{x} P\left(W^{d \kappa} T, x\right) \phi\left(\frac{x}{W^{1+d \kappa / 2}}\right)
$$

Known and new result

Known and new result

Theorem (Ërdos L. , Knowles A. 2011)

Let $0<\kappa<1 / 3$ be fixed. Then for any $\phi \in C_{b}\left(\mathbb{R}^{d}\right)$ and for any $T_{0}>0$ we have that

$$
\lim _{W \rightarrow \infty} \mathbb{E} Y_{T}(\phi)=\int_{\mathbb{R}^{d}} d X L(T, X) \phi(X)
$$

uniformly in $N \geq W^{1+d / 6}$ and $0 \leq T \leq T_{0}$. Here

$$
L(T, X):=\int_{0}^{1} d \lambda \frac{4}{\pi} \frac{\lambda^{2}}{\sqrt{1-\lambda^{2}}} G(\lambda T, X)
$$

and G is the heat kernel

$$
G(T, X):=\left(\frac{d+2}{2 \pi T}\right)^{d / 2} e^{-\frac{d+2}{2 T}|X|^{2}}
$$

Known and new result

Theorem (Knowles A., M. 2015)

Fix $T_{0}>0$ and κ such that $0<\kappa<1 / 3$. Choose a real number β satisfying $0<\beta<2 / 3-2 \kappa$. Then there exists $C \geq 0$ and $W_{0} \geq 0$ depending only on T_{0}, κ and β such that for all $T \in\left[0, T_{0}\right], W \geq W_{0}$ and $N \geq W^{1+\frac{d}{6}}$ we have

$$
\operatorname{Var}\left(Y_{T}(\phi)\right) \leq \frac{C\|\phi\|_{\infty}^{2}}{W^{d \beta}}
$$

Sketch of the Proof

Expanding in non-backtracking powers

Sketch of the Proof

Expanding in non-backtracking powers

Let us introduce

$$
\begin{aligned}
H^{(1)} & =H \\
H_{x_{0}, x_{n}}^{(n)} & :=\sum_{x_{1}, \ldots, x_{n-1}}\left(\prod_{i=0}^{n-2} 1\left(x_{i} \neq x_{i+2}\right)\right) H_{x_{0} x_{1}}, \ldots, H_{x_{n-1} x_{n}} \quad(n \geq 2) .
\end{aligned}
$$

Sketch of the Proof

Expanding in non-backtracking powers

Let us introduce

$$
\begin{aligned}
H^{(1)} & =H \\
H_{x_{0}, x_{n}}^{(n)} & :=\sum_{x_{1}, \ldots, x_{n-1}}\left(\prod_{i=0}^{n-2} 1\left(x_{i} \neq x_{i+2}\right)\right) H_{x_{0} x_{1}}, \ldots, H_{x_{n-1} x_{n}} \quad(n \geq 2) .
\end{aligned}
$$

Let U_{k} be the k-th Cebyshev polynomial of the second kind and let

$$
\alpha_{k}(t):=\frac{2}{\pi} \int_{-1}^{1} \sqrt{1-\zeta^{2}} e^{-i t \zeta} U_{k}(\zeta) d \zeta
$$

We define the quantity $a_{m}(t)=\sum_{k \geq 0} \frac{\alpha_{m+2 k}(t)}{(M-1)^{k}}$. Then we have that

$$
e^{-i t H / 2}=\sum_{m \geq 0} a_{m}(t) H^{(m)}
$$

Expansion in non-backtracking powers

Expansion in non-backtracking powers

Plugging in the definition of $Y_{T}(\phi)$ we have

$$
\begin{aligned}
\operatorname{Var}\left(Y_{T}(\phi)\right) & =\sum_{y_{1}, y_{2}} \phi\left(\frac{y_{1}}{W^{1+d \kappa / 2}}\right) \phi\left(\frac{y_{2}}{W^{1+d \kappa / 2}}\right)\left\langle P\left(t, y_{1}\right) ; P\left(t, y_{2}\right)\right\rangle \\
& \leq\|\phi\|_{\infty}^{2} \sum_{y_{1}} \sum_{y_{2}}\left|\left\langle P\left(t, y_{1}\right) ; P\left(t, y_{2}\right)\right\rangle\right|
\end{aligned}
$$

Expansion in non-backtracking powers

Plugging in the definition of $Y_{T}(\phi)$ we have

$$
\begin{aligned}
\operatorname{Var}\left(Y_{T}(\phi)\right) & =\sum_{y_{1}, y_{2}} \phi\left(\frac{y_{1}}{W^{1+d \kappa / 2}}\right) \phi\left(\frac{y_{2}}{W^{1+d \kappa / 2}}\right)\left\langle P\left(t, y_{1}\right) ; P\left(t, y_{2}\right)\right\rangle \\
& \leq\|\phi\|_{\infty}^{2} \sum_{y_{1}} \sum_{y_{2}}\left|\left\langle P\left(t, y_{1}\right) ; P\left(t, y_{2}\right)\right\rangle\right|
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \left\langle P\left(t, y_{1}\right) ; P\left(t, y_{2}\right)\right\rangle= \\
& =\sum_{n_{11}, n_{12} \geq 0} \sum_{n_{21}, n_{22} \geq 0} a_{n_{11}}(t) \overline{a_{n_{12}}(t)} a_{n_{21}}(t) \overline{a_{n_{22}}(t)}\left\langle H_{0 y_{1}}^{\left(n_{11}\right)} H_{y_{1} 0}^{\left(n_{12}\right)} ; H_{0 y_{2}}^{\left(n_{21}\right)} H_{y_{2} 0}^{\left(n_{22}\right)}\right\rangle .
\end{aligned}
$$

Graphical Representation

Graphical Representation

Figure: The graphical representation of a path of vertices.

- Each vertex $i \in V(\mathcal{L})$ carries a label $x_{i} \in \Lambda_{N}$.
- Each vertex $i \in V(\mathcal{L})$ carries a label $x_{i} \in \Lambda_{N}$.
- For each configuration of labels \mathbf{x} we assign a lumping $\Gamma=\Gamma(\mathbf{x})$ of the set of edges $E(\mathcal{L})$. The lumping $\Gamma=\Gamma(\mathbf{x})$ associated with the labels \mathbf{x} is given by the equivalence relation

$$
e \sim e^{\prime} \Leftrightarrow\left\{x_{a(e)}, x_{b(e)}\right\}=\left\{x_{a\left(e^{\prime}\right)}, x_{b\left(e^{\prime}\right)}\right\}
$$

Graphical Representation

Graphical Representation

- Using the graph \mathcal{L} we may now write the covariance as

$$
\left\langle H_{0 y_{1}}^{\left(n_{11}\right)} H_{y_{1} 0}^{\left(n_{12}\right)} ; H_{0 y_{2}}^{\left(n_{21}\right)} H_{y_{2} 0}^{\left(n_{22}\right)}\right\rangle=\sum_{x \in \Lambda_{N}^{V(\mathcal{L})}} Q_{y_{1}, y_{2}}(\mathbf{x}) A(\mathbf{x})
$$

Graphical Representation

- Using the graph \mathcal{L} we may now write the covariance as

$$
\left\langle H_{0 y_{1}}^{\left(n_{11}\right)} H_{y_{1} 0}^{\left(n_{12}\right)} ; H_{0 y_{2}}^{\left(n_{21}\right)} H_{y_{2} 0}^{\left(n_{22}\right)}\right\rangle=\sum_{x \in \Lambda_{N}^{V(\mathcal{L})}} Q_{y_{1}, y_{2}}(\mathbf{x}) A(\mathbf{x})
$$

where

$$
\begin{aligned}
Q_{y_{1}, y_{2}}(\mathbf{x}) & =\mathbf{1}\left(x_{r\left(\mathcal{L}_{1}\right)}=0\right) \mathbf{1}\left(x_{r\left(\mathcal{L}_{2}\right)}=0\right) \mathbf{1}\left(x_{s\left(\mathcal{L}_{1}\right)}=y_{1}\right) \mathbf{1}\left(x_{s\left(\mathcal{L}_{2}\right)}=y_{2}\right) \\
& \prod_{i \in V_{b}(\mathcal{L})} \mathbf{1}\left(x_{a(i)} \neq x_{b(i)}\right) .
\end{aligned}
$$

Graphical Representation

- Using the graph \mathcal{L} we may now write the covariance as

$$
\left\langle H_{0 y_{1}}^{\left(n_{11}\right)} H_{y_{1} 0}^{\left(n_{12}\right)} ; H_{0 y_{2}}^{\left(n_{21}\right)} H_{y_{2} 0}^{\left(n_{22}\right)}\right\rangle=\sum_{x \in \Lambda_{N}^{V(\mathcal{L})}} Q_{y_{1}, y_{2}}(\mathbf{x}) A(\mathbf{x})
$$

where

$$
\begin{aligned}
& Q_{y_{1}, y_{2}}(\mathbf{x})=\mathbf{1}\left(x_{r\left(\mathcal{L}_{1}\right)}=0\right) \mathbf{1}\left(x_{r\left(\mathcal{L}_{2}\right)}=0\right) \mathbf{1}\left(x_{s\left(\mathcal{L}_{1}\right)}=y_{1}\right) \mathbf{1}\left(x_{s\left(\mathcal{L}_{2}\right)}=y_{2}\right) \\
& \quad \prod_{i \in V_{b}(\mathcal{L})} \mathbf{1}\left(x_{a(i)} \neq x_{b(i)}\right) . \\
& \text { and }
\end{aligned}
$$

$$
A(\mathbf{x})=\mathbb{E} \prod_{e \in E(\mathcal{L})} H_{x_{e}}-\mathbb{E} \prod_{e \in E\left(\mathcal{L}_{1}\right)} H_{x_{e}} \mathbb{E} \prod_{e \in E\left(\mathcal{L}_{2}\right)} H_{x_{e}}
$$

Graphical Representation

Graphical Representation

- Let $\mathfrak{P}_{c}(E(\mathcal{L}))$ be the set of connected even lumpings, i.e. the set of all lumpings Γ for which each lump $\gamma \in \Gamma$ has even size and there exists $\gamma \in \Gamma$ such that $\gamma \cap E\left(\mathcal{L}_{k}\right) \neq \emptyset$, for $k \in\{1,2\}$.

Graphical Representation

- Let $\mathfrak{P}_{c}(E(\mathcal{L}))$ be the set of connected even lumpings, i.e. the set of all lumpings Γ for which each lump $\gamma \in \Gamma$ has even size and there exists $\gamma \in \Gamma$ such that $\gamma \cap E\left(\mathcal{L}_{k}\right) \neq \emptyset$, for $k \in\{1,2\}$.

Lemma

We have that

$$
\left\langle H_{0 y_{1}}^{\left(n_{11}\right)} H_{y_{1} 0}^{\left(n_{12}\right)} ; H_{0 y_{2}}^{\left(n_{21}\right)} H_{y_{2} 0}^{\left(n_{22}\right)}\right\rangle=\sum_{\Gamma \in \mathfrak{P}_{c}(E(\mathcal{L}))} V_{y_{1}, y_{2}}(\Gamma)
$$

where $V_{y_{1}, y_{2}}(\Gamma)=\sum_{\mathbf{x}} \mathbf{1}(\Gamma(\mathbf{x})=\Gamma) Q_{y_{1}, y_{2}}(\mathbf{x}) A(\mathbf{x})$.

Graphical Representation

Graphical Representation

- We define \mathfrak{M}_{c} the set of all connected pairings

$$
\bigsqcup_{n_{11}, n_{12}, n_{21}, n_{22}}\left\{\Pi \in \mathfrak{P}_{c}\left(E\left(\mathcal{L}\left(n_{11}, n_{12}, n_{21}, n_{22}\right)\right)\right):|\pi|=2, \quad \forall \pi \in \Pi\right\}
$$

Graphical Representation

- We define \mathfrak{M}_{c} the set of all connected pairings

$$
\bigsqcup_{n_{11}, n_{12}, n_{21}, n_{22}}\left\{\Pi \in \mathfrak{P}_{c}\left(E\left(\mathcal{L}\left(n_{11}, n_{12}, n_{21}, n_{22}\right)\right)\right):|\pi|=2, \forall \pi \in \Pi\right\}
$$

- We call the lumps $\pi \in \Pi$ of a pairing Π bridges.

First estimate

First estimate

- Consider

$$
J_{\left\{e, e^{\prime}\right\}}(\mathbf{x})=\mathbf{1}\left(x_{a(e)}=x_{b\left(e^{\prime}\right)}\right) \mathbf{1}\left(x_{a^{\prime}(e)}=x_{b(e)}\right)
$$

First estimate

- Consider

$$
J_{\left\{e, e^{\prime}\right\}}(\mathbf{x})=\mathbf{1}\left(x_{a(e)}=x_{b\left(e^{\prime}\right)}\right) \mathbf{1}\left(x_{a^{\prime}(e)}=x_{b(e)}\right)
$$

Lemma

We have

$$
\begin{aligned}
\mid\left\langle P\left(t, y_{1}\right) ;\right. & \left.P\left(t, y_{2}\right)\right\rangle \mid \\
& \leq \sum_{\Pi \in \mathfrak{M}_{c}}\left|a_{n_{11}(\Pi)}(t) \overline{a_{n_{12}(\Pi)}(t)} a_{n_{21}(\Pi)}(t) \overline{a_{n_{22}(\Pi)}(t)}\right|
\end{aligned}
$$

$$
\sum_{\mathbf{x}} Q_{y_{1}, y_{2}}(\mathbf{x}) \prod_{\left\{e, e^{\prime}\right\} \in \Pi} S_{x_{e}} \prod_{\left\{e, e^{\prime}\right\} \in \Pi} J_{\left\{e, e^{\prime}\right\}}(\mathbf{x})
$$

Collapsing of parallel bridges

Collapsing of parallel bridges

- To each $\Pi \in \mathfrak{M}_{c}$ we associate a couple $\left(\Sigma, I_{\Sigma}\right)$, where $\Sigma \in \mathfrak{M}_{c}$ has no parallel bridges and $I_{\Sigma}:=\left(I_{\sigma}\right)_{\sigma \in \Sigma} \in \mathbb{N}^{\Sigma}$. The integer I_{σ} denotes the number of parallel bridges of Π that were collapsed into the bridge σ of Σ. Inverting the procedure we obtain a bijection $\Pi \longleftrightarrow\left(\Sigma, I_{\Sigma}\right)$.

Collapsing of parallel bridges

- To each $\Pi \in \mathfrak{M}_{c}$ we associate a couple $\left(\Sigma, I_{\Sigma}\right)$, where $\Sigma \in \mathfrak{M}_{c}$ has no parallel bridges and $I_{\Sigma}:=\left(I_{\sigma}\right)_{\sigma \in \Sigma} \in \mathbb{N}^{\Sigma}$. The integer I_{σ} denotes the number of parallel bridges of Π that were collapsed into the bridge σ of Σ. Inverting the procedure we obtain a bijection $\Pi \longleftrightarrow\left(\Sigma, I_{\Sigma}\right)$.
- We further define the set of admissible skeletons as

$$
\mathfrak{G}=\left\{S(\Pi): \Pi \in \mathfrak{M}_{c}\right\}
$$

Collapsing of parallel bridges

- To each $\Pi \in \mathfrak{M}_{c}$ we associate a couple $\left(\Sigma, I_{\Sigma}\right)$, where $\Sigma \in \mathfrak{M}_{c}$ has no parallel bridges and $I_{\Sigma}:=\left(I_{\sigma}\right)_{\sigma \in \Sigma} \in \mathbb{N}^{\Sigma}$. The integer I_{σ} denotes the number of parallel bridges of Π that were collapsed into the bridge σ of Σ. Inverting the procedure we obtain a bijection $\Pi \longleftrightarrow\left(\Sigma, I_{\Sigma}\right)$.
- We further define the set of admissible skeletons as

$$
\mathfrak{G}=\left\{S(\Pi): \Pi \in \mathfrak{M}_{c}\right\}
$$

- We further define $|\Sigma|=\sum_{\sigma \in \Sigma} I_{\sigma}$ for $\Sigma \in \mathfrak{G}$.

Collapsing of parallel bridges

Figure: Graphical representation of the skeleton for a given configuration

Collapsing of parallel bridges

Collapsing of parallel bridges

Collapsing of parallel bridges

Lemma

We have that

$$
\begin{aligned}
& \sum_{y_{1}} \sum_{y_{2}}\left\langle P\left(t, y_{1}\right) ; P\left(t, y_{2}\right)\right\rangle \leq \\
& \sum_{\Sigma \in \mathfrak{G}} \sum_{I_{\Sigma}}\left|a_{n_{11}\left(\Sigma, l_{\Sigma}\right)}(t) \overline{a_{n_{12}\left(\Sigma, I_{\Sigma}\right)}(t)} a_{n_{21}\left(\Sigma, l_{\Sigma}\right)}(t) \overline{a_{n_{22}\left(\Sigma, l_{\Sigma}\right)}(t)}\right| R(\Sigma),
\end{aligned}
$$

where

$$
\begin{aligned}
R(\Sigma)= & \sum_{\mathbf{x} \in \Lambda_{N}^{V(\Sigma)}} \mathbf{1}\left(x_{r}\left(\mathcal{L}_{1}(\Sigma)\right)=0\right) \mathbf{1}\left(x_{r\left(\mathcal{L}_{2}(\Sigma)\right)}=0\right) \\
& \left.\prod_{\left\{e, e^{\prime}\right\} \in \Sigma}\left(S^{\prime}\left\{e, e^{\prime}\right\}\right)\right)_{x_{e}} \prod_{\sigma \in \Sigma} J_{\sigma}(\mathbf{x})
\end{aligned}
$$

Orbits of vertices

Orbits of vertices

- For fixed $\Sigma \in \mathfrak{G}$ we define $\tau: V(\Sigma) \rightarrow V(\Sigma)$ as follows. Let $i \in V(\Sigma)$ and let e be the unique edge such that $\{\{i, b(i)\}, e\} \in \Sigma$. Then, for any vertex i of $\Sigma \in \mathfrak{G}$ we define $\tau i=b(e)$. We denote the orbit of the vertex $i \in \Sigma$ by $[i]:=\left\{\tau^{n} i: n \in \mathbb{N}\right\}$

Orbits of vertices

- Let $Z(\Sigma):=\{[i]: i \in V(\Sigma)\}$ be the set of orbits of Σ and $|\Sigma|$ be the number of bridges of the skeleton Σ and let $L(\Sigma)=\left|Z^{*}(\Sigma)\right|$ with $Z^{*}(\Sigma):=Z(\Sigma) \backslash\left\{\left[r\left(\mathcal{L}_{1}\right)\right],\left[r\left(\mathcal{L}_{2}\right)\right]\right\}$.

Orbits of vertices

- Let $Z(\Sigma):=\{[i]: i \in V(\Sigma)\}$ be the set of orbits of Σ and $|\Sigma|$ be the number of bridges of the skeleton Σ and let $L(\Sigma)=\left|Z^{*}(\Sigma)\right|$ with $Z^{*}(\Sigma):=Z(\Sigma) \backslash\left\{\left[r\left(\mathcal{L}_{1}\right)\right],\left[r\left(\mathcal{L}_{2}\right)\right]\right\}$.

Lemma

We have the inequality

$$
L(\Sigma) \leq \frac{2|\Sigma|}{3}+\frac{2}{3} .
$$

Orbits of vertices

- Let $Z(\Sigma):=\{[i]: i \in V(\Sigma)\}$ be the set of orbits of Σ and $|\Sigma|$ be the number of bridges of the skeleton Σ and let $L(\Sigma)=\left|Z^{*}(\Sigma)\right|$ with $Z^{*}(\Sigma):=Z(\Sigma) \backslash\left\{\left[r\left(\mathcal{L}_{1}\right)\right],\left[r\left(\mathcal{L}_{2}\right)\right]\right\}$.

Lemma

We have the inequality

$$
L(\Sigma) \leq \frac{2|\Sigma|}{3}+\frac{2}{3}
$$

Lemma

Let $\Sigma \in \mathfrak{G}$ and $I_{\Sigma \in \Lambda_{N}}^{V(\Sigma)}$. We have that

$$
R(\Sigma) \leq C\left(\frac{M}{M-1}\right)^{|/ \Sigma|} M^{-|\Sigma| / 3+2 / 3}
$$

Truncation

Truncation

- We introduce a cut-off at $|\Sigma|<M^{\mu}$ for $\mu<1 / 3$. We define

$$
E^{\leq}=\sum_{\Sigma \in \mathfrak{G}} \sum_{\left|I_{\Sigma}\right| \leq M^{\mu}}\left|a_{n_{11}\left(\Sigma, /_{\Sigma}\right)}(t) \overline{a_{n_{12}\left(\Sigma, l_{\Sigma}\right)}(t)} a_{n_{21}\left(\Sigma, l_{\Sigma}\right)}(t) \overline{a_{n_{22}\left(\Sigma, /_{\Sigma}\right)}(t)}\right| R(\Sigma)
$$

Truncation

- We introduce a cut-off at $\left|I_{\Sigma}\right|<M^{\mu}$ for $\mu<1 / 3$. We define

$$
E \leq=\sum_{\Sigma \in \mathfrak{G}} \sum_{\left|I_{\Sigma}\right| \leq M^{\mu}}\left|a_{n_{11}\left(\Sigma, /_{\Sigma}\right)}(t) \overline{a_{n_{12}\left(\Sigma, l_{\Sigma}\right)}(t)} a_{n_{21}\left(\Sigma, l_{\Sigma}\right)}(t) \overline{a_{n_{22}\left(\Sigma, l_{\Sigma}\right)}(t)}\right| R(\Sigma)
$$

Lemma

(1) For any time t and for any $n \in \mathbb{N}$ we have $\left|a_{n}(t)\right| \leq \frac{C t^{n}}{n!}$, with C universal constant.
(2) We have $\sum_{n \geq 0}\left|a_{n}(t)\right|^{2}=1+O\left(M^{-1}\right)$, uniformly in $t \in \mathbb{R}$.

Main Lemma

Main Lemma

Lemma

For any $\Sigma \in \mathfrak{G}$ with $|\Sigma| \geq 3$ we have

$$
\begin{gathered}
\sum_{I_{\Sigma}} \mathbf{1}\left(| |_{\Sigma} \mid \leq M^{\mu}\right)\left|a_{n_{11}\left(\Sigma, I_{\Sigma}\right)}(t) \overline{a_{n_{12}\left(\Sigma, l_{\Sigma}\right)}(t)} a_{n_{21}\left(\Sigma, l_{\Sigma}\right)}(t) \overline{a_{n_{22}\left(\Sigma, l_{\Sigma}\right)}(t)}\right| \\
\leq \frac{C M^{\mu(|\Sigma|-2)}}{(|\Sigma|-3)!}
\end{gathered}
$$

End of the proof

End of the proof

In order to finish the argument
(1) We prove using Stirling approximation and some arguments involving geometric series that the remaining terms are tiny.

$$
E^{>}=\sum_{\Sigma \in \mathfrak{G}} \sum_{\left|I_{\Sigma}\right| \geq M^{\mu}}\left|a_{n_{11}\left(\Sigma, /_{\Sigma}\right)}(t) \overline{a_{n_{12}\left(\Sigma, l_{\Sigma}\right)}(t)} a_{n_{21}\left(\Sigma, l_{\Sigma}\right)}(t) \overline{a_{n_{22}\left(\Sigma, /_{\Sigma}\right)}(t)}\right| R(\Sigma)
$$

End of the proof

In order to finish the argument
(1) We prove using Stirling approximation and some arguments involving geometric series that the remaining terms are tiny.

$$
E^{>}=\sum_{\Sigma \in \mathfrak{G}| |_{\Sigma} \mid \geq M^{\mu}}\left|a_{n_{11}\left(\Sigma, \Sigma_{\Sigma}\right)}(t) \overline{a_{n_{12}\left(\Sigma, l_{\Sigma}\right)}(t)} a_{n_{21}\left(\Sigma, /_{\Sigma}\right)}(t) \overline{a_{n_{22}\left(\Sigma, /_{\Sigma}\right)}(t)}\right| R(\Sigma)
$$

(2) We find bounds by direct computation for the cases $|\Sigma|=0,|\Sigma|=1$ and $|\Sigma|=2$, and we conclude the proof.

Summary

Summary

- We started with

$$
\operatorname{Var}\left(Y_{T}(\phi)\right) \leq\|\phi\|_{\infty}^{2} \sum_{y_{1}} \sum_{y_{2}}\left|\left\langle P\left(t, y_{1}\right) ; P\left(t, y_{2}\right)\right\rangle\right|
$$

Summary

- We started with

$$
\operatorname{Var}\left(Y_{T}(\phi)\right) \leq\|\phi\|_{\infty}^{2} \sum_{y_{1}} \sum_{y_{2}}\left|\left\langle P\left(t, y_{1}\right) ; P\left(t, y_{2}\right)\right\rangle\right|
$$

- Via graphical and combinatorial arguments we arrived at

$$
\begin{aligned}
& \sum_{y_{1}} \sum_{y_{2}}\left\langle P\left(t, y_{1}\right) ; P\left(t, y_{2}\right)\right\rangle \leq \\
& \sum_{\Sigma \in \mathfrak{G}} \sum_{I_{\Sigma}}\left|a_{n_{11}\left(\Sigma, l_{\Sigma}\right)}(t) \overline{a_{n_{12}\left(\Sigma, I_{\Sigma}\right)}(t)} a_{n_{21}\left(\Sigma, l_{\Sigma}\right)}(t) \overline{a_{n_{22}\left(\Sigma, l_{\Sigma}\right)}(t)}\right| R(\Sigma)
\end{aligned}
$$

Summary

- We started with

$$
\operatorname{Var}\left(Y_{T}(\phi)\right) \leq\|\phi\|_{\infty}^{2} \sum_{y_{1}} \sum_{y_{2}}\left|\left\langle P\left(t, y_{1}\right) ; P\left(t, y_{2}\right)\right\rangle\right|
$$

- Via graphical and combinatorial arguments we arrived at

$$
\begin{aligned}
& \sum_{y_{1}} \sum_{y_{2}}\left\langle P\left(t, y_{1}\right) ; P\left(t, y_{2}\right)\right\rangle \leq \\
& \sum_{\Sigma \in \mathfrak{G}} \sum_{I_{\Sigma}}\left|a_{n_{11}\left(\Sigma, l_{\Sigma}\right)}(t) \overline{a_{n_{12}\left(\Sigma, l_{\Sigma}\right)}(t)} a_{n_{21}\left(\Sigma, /_{\Sigma}\right)}(t) \overline{a_{n_{22}\left(\Sigma, /_{\Sigma}\right)}(t)}\right| R(\Sigma) .
\end{aligned}
$$

- Truncating the expression in $|/ \Sigma|$ and summing the two terms under the specific conditions on the parameters imposed by the setting (i.e. $0<\kappa \leq 1 / 3, .0<\beta<2 / 3-2 \kappa$.), we obtain a bound for the variance of the form

$$
\operatorname{Var}\left(Y_{T}(\phi)\right) \leq \frac{C\|\phi\|_{\infty}^{2}}{W^{d \beta}}
$$

Thank you for your attention!

References

Erdös L., Knowles A. Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model Comm. Math. Phys., 303 509-554, 2011.
囯 Bai, Z.D., Yin, Y.Q Limit of the smallest eigenvalue of a large dimensional sample covariance matrix Ann. Probab., 21 12751294, 1993.

Erdös L., Knowles A. The Altshuler-Shklovskii formulas for random band matrices II: the general case. Preprint arXiv:1309.5107, 76 pages, to appear in Ann. H. Poincar.
Anderson P., Absences of diffusion in certain random lattices Phys. Revue., 109 14921505, 1958.
国 Spencer T., Random banded and sparse matrices (Chapter 23) Oxford handbook of Random Matrix Theoryëdited by G.Akemann, J.Baik and P. Di Francesco.

