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Introduction of the model
Preliminaries

Let Zd be the infinite lattice with the Euclidean norm | · |Zd and let M
the number of points situated at distance at most W (W ≥ 2) from
the origin, i.e.

M = M(W ) = |{x ∈ Zd : 1 ≤ | · |Zd ≤W } .

For simplicity we consider throught the proof a d-dimensional finite
periodic lattice ΛN ⊂ Zd (d ≥ 1) of linear size N equipped with the
Euclidean norm | · |Zd . Specifically, we take ΛN to be a cube centered
around the origin with side length N, i.e.

ΛN := ([−N/2,N/2) ∩ Z)d .
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Introduction of the Model
Preliminaries

In order to define the random matrices H with band width W in our
model, let us first consider

Sxy :=
1(1 ≤ |x − y | ≤W )

(M − 1)
.

We define the random band matrix (Hxy ) through

Hxy :=
√
SxyAxy ,

where (Axy ) is Hermitian random matrix whose upper triangular
entries (Axy : x ≤ y) are independent random variables uniformly
distributed on the unit circle S1 ⊂ C .

Note that the entries Hxy in the random band matrix H are indexed
by x and y which are indices of points in ΛN .
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Introduction of the Model

Let us consider also the function

P(t, x) = |(e−itH/2)0x |2 ,
that describes the quantum transition probability of a particle starting
in 0 and ending in position x after time t .

For κ > 0, we introduce the macroscopic time and space coordinates
T and X , which are independent of W , and consider the microscopic
time and space coordinates

t = W dκT ,

x = W 1+dκ/2X .

Given φ ∈ Cb(Rd) , we define the main quantity that we investigate by

YT ,κ,W (φ) ≡ YT (φ) :=
∑
x

P(W dκT , x)φ
( x

W 1+dκ/2

)
.
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Known and new result

Theorem (Ërdos L. , Knowles A. 2011)

Let 0 < κ < 1/3 be fixed. Then for any φ ∈ Cb(Rd) and for any T0 > 0
we have that

lim
W→∞

EYT (φ) =

∫
Rd

dX L(T ,X )φ(X ) ,

uniformly in N ≥W 1+d/6 and 0 ≤ T ≤ T0 .
Here

L(T ,X ) :=

∫ 1

0
dλ

4

π

λ2

√
1− λ2

G (λT ,X ) ,

and G is the heat kernel

G (T ,X ) :=

(
d + 2

2πT

)d/2

e−
d+2
2T
|X |2 .
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Known and new result

Theorem (Knowles A., M. 2015)

Fix T0 > 0 and κ such that 0 < κ < 1/3 . Choose a real number β
satisfying 0 < β < 2/3− 2κ . Then there exists C ≥ 0 and W0 ≥ 0
depending only on T0, κ and β such that for all T ∈ [0,T0] , W ≥W0

and N ≥W 1+ d
6 we have

Var(YT (φ)) ≤ C ||φ||2∞
W dβ

.
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Sketch of the Proof
Expanding in non-backtracking powers

Let us introduce

H(1) = H ,

H
(n)
x0,xn : =

∑
x1,...,xn−1

(
n−2∏
i=0

1(xi 6= xi+2)

)
Hx0x1 , . . . ,Hxn−1xn (n ≥ 2) .

Let Uk be the k-th Cebyshev polynomial of the second kind and let

αk(t) :=
2

π

1∫
−1

√
1− ζ2e−itζUk(ζ)dζ .

We define the quantity am(t) =
∑
k≥0

αm+2k (t)
(M−1)k

. Then we have that

e−itH/2 =
∑
m≥0

am(t)H(m) .
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Expansion in non-backtracking powers

Plugging in the definition of YT (φ) we have

Var(YT (φ)) =
∑
y1,y2

φ
( y1

W 1+dκ/2

)
φ
( y2

W 1+dκ/2

)
〈P(t, y1);P(t, y2)〉

≤ ||φ||2∞
∑
y1

∑
y2

|〈P(t, y1);P(t, y2)〉| .

Moreover,

〈P(t, y1);P(t, y2)〉 =

=
∑

n11,n12≥0

∑
n21,n22≥0

an11(t)an12(t)an21(t)an22(t)〈H(n11)
0y1

H
(n12)
y10 ;H

(n21)
0y2

H
(n22)
y20 〉 .
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Graphical Representation

    

  

 r(L1) s(L1)

r(L2) s(L2)

  
i   

a(i) b(i)

L1

L2

Figure: The graphical representation of a path of vertices.
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Each vertex i ∈ V (L) carries a label xi ∈ ΛN .

For each configuration of labels x we assign a lumping Γ = Γ(x) of
the set of edges E (L). The lumping Γ = Γ(x) associated with the
labels x is given by the equivalence relation

e ∼ e ′ ⇔ {xa(e), xb(e)} = {xa(e′), xb(e′)} .
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Graphical Representation

Using the graph L we may now write the covariance as

〈H(n11)
0y1

H
(n12)
y10 ;H

(n21)
0y2

H
(n22)
y20 〉 =

∑
x∈Λ

V (L)
N

Qy1,y2(x)A(x) ,

where

Qy1,y2(x) = 1(xr(L1) = 0)1(xr(L2) = 0)1(xs(L1) = y1)1(xs(L2) = y2)∏
i∈Vb(L)

1(xa(i) 6= xb(i)) .

and

A(x) = E
∏

e∈E(L)

Hxe − E
∏

e∈E(L1)

HxeE
∏

e∈E(L2)

Hxe .
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Graphical Representation

Let Pc(E (L)) be the set of connected even lumpings, i.e. the set of
all lumpings Γ for which each lump γ ∈ Γ has even size and there
exists γ ∈ Γ such that γ ∩ E (Lk) 6= ∅ , for k ∈ {1, 2} .

Lemma

We have that

〈H(n11)
0y1

H
(n12)
y10 ;H

(n21)
0y2

H
(n22)
y20 〉 =

∑
Γ∈Pc (E(L))

Vy1,y2(Γ) ,

where Vy1,y2(Γ) =
∑
x
1(Γ(x) = Γ)Qy1,y2(x)A(x) .
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Graphical Representation

We define Mc the set of all connected pairings⊔
n11,n12,n21,n22

{Π ∈ Pc(E (L(n11, n12, n21, n22))) : |π| = 2 , ∀π ∈ Π} .

We call the lumps π ∈ Π of a pairing Π bridges.
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First estimate

Consider

J{e,e′}(x) = 1(xa(e) = xb(e′))1(xa′(e) = xb(e)) .

Lemma

We have

|〈P(t, y1);P(t, y2)〉|

≤
∑

Π∈Mc

|an11(Π)(t)an12(Π)(t)an21(Π)(t)an22(Π)(t)|

∑
x

Qy1,y2(x)
∏

{e,e′}∈Π

Sxe
∏

{e,e′}∈Π

J{e,e′}(x) .
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Collapsing of parallel bridges

To each Π ∈Mc we associate a couple (Σ, lΣ), where Σ ∈Mc has no
parallel bridges and lΣ := (lσ)σ∈Σ ∈ NΣ . The integer lσ denotes the
number of parallel bridges of Π that were collapsed into the bridge σ
of Σ . Inverting the procedure we obtain a bijection Π←→ (Σ, lΣ) .

We further define the set of admissible skeletons as

G = {S(Π) : Π ∈Mc} .

We further define |lΣ| =
∑

σ∈Σ lσ for Σ ∈ G .
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G = {S(Π) : Π ∈Mc} .

We further define |lΣ| =
∑

σ∈Σ lσ for Σ ∈ G .
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Collapsing of parallel bridges

L1

L2

s(L1)

r(L2)

s(L2)

r(L1)

Figure: Graphical representation of the skeleton for a given configuration
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Collapsing of parallel bridges

Lemma

We have that∑
y1

∑
y2

〈P(t, y1);P(t, y2)〉 ≤∑
Σ∈G

∑
lΣ

|an11(Σ,lΣ)(t)an12(Σ,lΣ)(t)an21(Σ,lΣ)(t)an22(Σ,lΣ)(t)|R(Σ) ,

where

R(Σ) =
∑

x∈Λ
V (Σ)
N

1(xr(L1(Σ)) = 0)1(xr(L2(Σ)) = 0)

∏
{e,e′}∈Σ

(
S l{e,e′}

)
xe

∏
σ∈Σ

Jσ(x) .
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Orbits of vertices

For fixed Σ ∈ G we define τ : V (Σ)→ V (Σ) as follows. Let
i ∈ V (Σ) and let e be the unique edge such that {{i , b(i)}, e} ∈ Σ .
Then, for any vertex i of Σ ∈ G we define τ i = b(e). We denote the
orbit of the vertex i ∈ Σ by [i ] := {τni : n ∈ N}

    

  

 

  
i   

τi  

τ2i

s(L1)

s(L2)
r(L2)

r(L1)

Figure: The graphical representation of a path of vertices.
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Orbits of vertices

Let Z (Σ) := {[i ] : i ∈ V (Σ)} be the set of orbits of Σ and |Σ| be the
number of bridges of the skeleton Σ and let L(Σ) = |Z ∗(Σ)| with
Z ∗(Σ) := Z (Σ) \ {[r(L1)], [r(L2)]} .

Lemma

We have the inequality

L(Σ) ≤ 2|Σ|
3

+
2

3
.

Lemma

Let Σ ∈ G and lΣ ∈ Λ
V (Σ)
N . We have that

R(Σ) ≤ C

(
M

M − 1

)|lΣ|
M−|Σ|/3+2/3 .
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Truncation

We introduce a cut-off at |lΣ| < Mµ for µ < 1/3 . We define

E≤ =
∑
Σ∈G

∑
|lΣ|≤Mµ

|an11(Σ,lΣ)(t)an12(Σ,lΣ)(t)an21(Σ,lΣ)(t)an22(Σ,lΣ)(t)|R(Σ) .

Lemma

1 For any time t and for any n ∈ N we have |an(t)| ≤ Ctn

n! , with C universal
constant.

2 We have
∑
n≥0

|an(t)|2 = 1 + O(M−1) , uniformly in t ∈ R .
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Main Lemma

Lemma

For any Σ ∈ G with |Σ| ≥ 3 we have∑
lΣ

1(|lΣ| ≤ Mµ)|an11(Σ,lΣ)(t)an12(Σ,lΣ)(t)an21(Σ,lΣ)(t)an22(Σ,lΣ)(t)|

≤ CMµ(|Σ|−2)

(|Σ| − 3)!
.
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End of the proof

In order to finish the argument

1 We prove using Stirling approximation and some arguments involving
geometric series that the remaining terms are tiny.

E> =
∑
Σ∈G

∑
|lΣ|≥Mµ

|an11(Σ,lΣ)(t)an12(Σ,lΣ)(t)an21(Σ,lΣ)(t)an22(Σ,lΣ)(t)|R(Σ) .

2 We find bounds by direct computation for the cases |Σ| = 0, |Σ| = 1
and |Σ| = 2 , and we conclude the proof.
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Summary

We started with

Var(YT (φ)) ≤ ||φ||2∞
∑
y1

∑
y2

|〈P(t, y1);P(t, y2)〉| .

Via graphical and combinatorial arguments we arrived at∑
y1

∑
y2

〈P(t, y1);P(t, y2)〉 ≤∑
Σ∈G

∑
lΣ

|an11(Σ,lΣ)(t)an12(Σ,lΣ)(t)an21(Σ,lΣ)(t)an22(Σ,lΣ)(t)|R(Σ) .

Truncating the expression in |lΣ| and summing the two terms under
the specific conditions on the parameters imposed by the setting (i.e.
0 < κ ≤ 1/3, . 0 < β < 2/3− 2κ . ), we obtain a bound for the
variance of the form

Var(YT (φ)) ≤ C ||φ||2∞
W dβ

.
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Thank you for your attention!
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