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Chapter 1

Introduction

This text is built on a collection of fundamental results from G. Lawler textbook Conformally In-

variant Processes in the Plane ( [8]) and J. Norris and N. Berestycki Lecture notes on Schramm-

Loewner Evolution. It also contains a separate section on one of the fundamental explicit ex-

pressions, O. Schramm’s observable, introduced in [10]. This text is a short introduction in the

field of SLE for someone who wants to learn the basic results with proofs in a fast way. It is

organized as a self-contained material and it contains a mixed exposition of the material in the

references mentioned. I would like to take this opportunity to thank Christina Zou and Ioana

Georgescu for helping me with the proofreading of the manuscript.

The Loewner equation was introduced by Charles Loewner in 1923 in Complex Analysis

and Geometric Function Theory and it played an important role in the proof of the Bieberbach

Conjecture by Louis de Branges in 1985 . There are two versions of Loewner equation -radial

and chordal- and they can be written as a partial differential equations or ordinary differential

equations depending on the family of conformal maps that are studied. Moreover, the ordinary

differential equation versions can be studied by considering a reverse time evolution also. In

2000 , Oded Schramm introduced a stochastic version of the Loewner equation in order to study

the scaling limits of planar loop erased random walk and uniform spanning tree.

One motivation for studying the processes SLEκ is their success in describing the scaling

limits of various discrete models from planar Statistical Physics. For instance, it was proved

that the scaling limit of loop erased random walk ( with the loops erased in a chronological

order) converges in the scaling limit to SLEκ with κ = 2 . Moreover, other two dimensional

discrete models from Statistical Mechanics including Ising model cluster boundaries, Gaussian

free field interfaces, percolation on the triangular lattice at critical probability, and Uniform

spanning trees converge in the scaling limit to SLEκ for values of κ = 3, κ = 4, κ = 6 and

κ = 8 respectively. In fact, the use of Loewner equation along with the techniques of stochastic

calculus, in this context gave a precise meaning to the passage to the scaling limit itself and

proved rigorously the conformal invariance of the limits.
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Numerical simulation of SLE curves has become an important aspect to investigating its

theory, see [1] and [6] for a discussion of the Ninomyia-Victoir scheme applied to SLE simulations.

Also, there is plenty of recent iinterest in the problem of continuity in the parameter κ of the

SLE traces, see for example ( [2]). An extension to the regular SLE, which is called the multiple

SLE by the community, is when the driver is given by the Dyson Brownian motions. See ( [7])

for a discussion on its formalism and some aspects of the corresponding perturbation theory.
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Chapter 2

Loewner Differential Equation and SLEκ

In this section, we study the interplay between the stochastic versions of chordal Loewner dif-

ferential equations.

An important object in the study of the Loewner differential equation is the H- compact

hull that is a bounded set in H such that its complement in H is simply connected. To every

compact H-hull that we typically denote with K , we associate canonical conformal isomorphism

gKH\K → H that is called the mapping out function of K. Note that the theory that we intro-

duce it has at its core the conformal invariance structure. Thus, the general study of the objects

of this theory can be mapped in one domain that is more convenient from the mathematical

point of view. Most of the time, the choice is the upperhalf plane H with∞ as a boundary point.

Given any compact H-hull K , we construct the mapping out function gK : H\ → H . Using

Riemann Mapping Theorem, we get uniqueness by imposing the hydrodynamic normalization at

∞ for gt , i.e. we require that gK looks like identity at ∞( i.e. it has no constant term and the

complex derivative of it is 1 . The unique mapping gK(z) : H → H , is constructed via Schwarz

Reflection principle that is used to obtain a new mapping that has ∞ as an interior point, such

that the map admits in the new domain a Laurent expansion there. Also, Schwarz reflection

principle is used to prove that the new mapping maps the real line after a given value to the real

line, so all the coefficients are real. Using the fact that the conformal automorphisms of H are

of the form f(z) = σz + µ for some positive σ and µ ∈ R , we obtain via suitable normalization

and shifting, mapping at ∞ of the form

gK(z) = z +
aK
z

+O(|z|−2) , |z| → ∞ .

The coefficient aK that appears in the expansion at ∞ of the mapping has the traditional

name halfplane capacity .

We start by introducing the Chordal Loewner Theory which establishes a one-to-one correspon-
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dence between continuous valued paths (ζt)t>0 and an increasing families (Kt)t>0 of compact

H-hulls having a certain growth property.

Firstly, we define the conformal radius to be rad(K) = inf{r > 0 : K ⊂ rD+ x for some x ∈
R} . This is a very useful notion to estimate the distance between the points and its image for

the mapping out function gK , associated with the compact hull K .

Let (Kt)t>0 be a family of increasing H-hulls, i.e. Ks is contained in Kt whenever s < t . For

Kt+ = ∩s>tKs and for s < t , set Ks,t = gKs(Kt \Ks) . We say that (Kt)t>0 has the local growth

property if

rad(Kt,t+h)→ 0 as h→ 0, uniformly on compacts in t .

The first connection between the family of growing compact H -hulls and the real-valued

path (ζt)t>0 is done in the following Proposition.

Proposition 2.0.1 (Proposition 7.1 in [5]). Let (Kt)t>0 be an increasing family of compact H-hulls

having the local growth property. Then, Kt+ = Kt for all t . Moreover, the mapping t→ hcap(Kt)

is continuous and strictly increasing on [0,∞) . Moreover, for all t > 0 there is a unique ζt ∈ R
such that ζt ∈ K̄t,t+h , for all h > 0 , and the process (ζt)t>0 is continuous.

The process (ζt)t>0 is called the Loewner transform of (Kt)t>0.

The map t→ hcap(Kt)/2 is a homeomorphism on [0, T ) and by choosing τ to be the inverse of

this homeomorphism, we obtain a new family of hulls K ′t in a new parametrization such that

hcap(K ′t) = 2t . This is the canonical parametrization that we use throughout the Thesis. We

call this parametrization halfplane capacity .

In the following proposition is introduced the Loewner differential equation starting from

the family of growing compact hulls. The main idea is that the local growth property of the

hulls, gives a description in terms of a specific differential equation for the associated mapping

out functions.

Proposition 2.0.2 (Proposition 7.3 of [5]). Let (Kt)t>0 be a family of increasing compact hulls in

H satisfying the local growth property and that are parametrized by the halfplane capacity. Let

(ζ)t be its Loewner transform. Set gt = gKt and ζ(z) = inf{t > 0 : z ∈ Kt} . Then, for all z ∈ H ,

the function (gt(z) : t ∈ [0, ζ(z)) is differentiable and satisfies the Loewner differential equation

ġt(z) =
2

gt(z)− ξt
.

Moreover, if ζ(z) <∞ then gt(z)− ξt → 0 as t→ ζ(z) .
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Figure 2.0.1. The Loewner differential equation in the case Kt = γ[0, t] .

The reverse situation is also true, i.e. from the driving function (ζ)t , we recover the family

of growing compact H-hulls .

Proposition 2.0.3 (Proposition 8.1 of [5]). For all z ∈ C \ {ζ0}, there is a unique ζ(z) ∈ (0,∞]

and a unique continuous map (gt(z) : t ∈ [0, ζ(z)) in C such that, for all t ∈ [0, ζ(z)) we have

gt 6= ζt and

gt(z) = z +

∫ t

0

2

gs(z)− ξs
ds ,

and such that |gt(z)− ζt| → 0 as t→ ζ(z) , whenever ζ(z) <∞ . Set ζ0 = 0 and define

Ct = {z ∈ C : ζ(z) > t} .

Then, for all t > 0 Ct is open and gt : Ct → C is holomorphic.

Moreover, the family of sets Kt= z ∈ H : ζ(z) 6 t is an increasing family of compact H-hulls

having the local growth property. Moreover, hcap(Kt)=2t , and gKt = gt , for allt . Moreover, the

driving function ξt is the Loewner transform of (Kt)t>0 .

The process gt(z) : t ∈ [0, ζ(z) is called the maximal solution to starting from z and ζ(z)

is called lifetime of the solution . Throughout the Thesis, we are mostly interested in the cases

where the hull Kt = γ([0, t]) , i.e. in the case when the hull is a curve.
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Figure 2.0.2. The conformal map that removes the curve grown up to time t

Firstly, the (classical) chordal version of the Loewner partial differential equation produces

a Loewner chain, i.e. a family of conformal maps from a domain of reference to a continuously

decreasing family of simply connected domains. Formally, let U(t) be a real valued function

- the driving term , and let f(t, z) : H → Ht, where Ht is a continuously decreasing family of

simply connected domains, be solutions to the chordal Loewner partial differential equation

∂tf(t, z) = −∂zf(t, z)
2

z − U(t)
, f(0, z) = z, z ∈ H . (2.0.1)

Secondly, the (classical) chordal Loewner differential equation has two versions

(i) The forward chordal Loewner differential equation

∂tg(t, z) =
2

g(t, z)− U(t)
, g(0, z) = z, z ∈ H , (2.0.2)

where the driving function Ut is a real valued function.

(ii) The backward chordal Loewner differential equation has the form

∂th(t, z) =
−2

h(t, z)− U(t)
, h(0, z) = z, z ∈ H , (2.0.3)

with U(t) as before.

Candidates for the SLE driving function

In this subsection , we give a brief sketch of the proof that given the principles that our curves

should satisfy, then the right candidate for the driver in Loewner equation is
√
κBt where κ ∈ R .

When was defined by Oded Schramm, the purpose of it was to be the suitable candidate for a

family of random curves in a domain D ⊂ C that were respecting two principles. The principles

were motivated by the study of Schramm to give a precise meaning of the scaling limits of

planar loop erased random walk with loops erased in the chronological order. When studying
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the planar loop erased random walk, Schramm realized that the scaling limit (if there exist any)

should manifest some Domain Markov Property and Conformal Invariance , that are presented

in the following.

Figure 2.0.3. Conformal invariance of the curve

I [Domain Markov] Given the curve γ[0, T ] , then the law of γ[t,∞] is a chordal SLE in

H \ γ[0, T ] , from γ(t) to ∞ .

I [Conformal Invariance] The chordal SLE law in Hγ[0, t] from γ(t) to ∞ is the pull-back

of the chordal SLE law in H from Ut to ∞ .

If we require these two properties and a certain symmetry of the law on curves with respect

to the imaginary axes, then the driving function in Loewner equation should be a
√
κBt . In

the following, we give a sketch of the proof for this result of Oded Schramm that marks the

introduction of SLE .

Sketch of the proof. Given the Domain Markov Property, the curve from Ut to∞ that is denoted

by γ∗(s) has the law of a chordal SLE curve in H from Ut to +∞ that is independent of γ[0, t] .

Note that γ∗(s) is determined by the driving function Ut+s − Ut , s > 0, and γ[0, t] by the

driving function Us, 0 6 s 6 t . We also have by the domain Markov property that γ∗(s) is

independent of γ[0, t] means that the driving function after time t should be independent of the

driving function up to time t, i.e. Ut is a Markov process.

Moreover, by conformal invariance (since g−1t is a conformal map, we have that γ∗[0, t] is identical

in law to γ[0, t], so Us ,0 6 s 6 t, should have the same law as Ut+s − Ut , 0 6 s 6 t . So the

increments of the Ut process have the same distribution and are independent, hence are i.i.d.
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Moreover, by writing dUt = bdt + σdBt then by the remarks that we obtain before about Ut ,

then a and b are forced to be constants. Thus, the conformal invariance and the Domain Markov

property force the driving process Ut to be a Brownian motion with drift. If we use our last

consideration, i.e. the law of the SLE curve should be invariant under reflections about the

imaginary axis (i.e. Ut should be invariant under negations, we obtain that b = 0 leaving

dUt = σdBt for some constant σ > 0 that we typically denote by
√
κ , due to reasons that will

become obvious later.

2.1 SLE definition and first remarks

The Schramm-Loewner evolution (SLE) is a one-parameter (usually denoted by κ) family of

random planar growth processes constructed as solution to Loewner equation when the driving

term is a re-scaled Brownian motion. Thus, when studying the SLEκ , in the upper half-plane,

the corresponding families of conformal maps satisfy the equations (2.0.1) , (2.0.2) and (2.0.3)

in the formats :

(i) Partial differential equation version for the chordal SLEκ in the upper half-plane

∂tf(t, z) = −∂zf(t, z)
2

z −
√
κBt

, f(0, z) = z, z ∈ H . (2.1.1)

(ii) Forward differential equation version for chordal SLEκ in the upper half-plane

∂tg(t, z) =
2

g(t, z)−
√
κBt

, g(0, z) = z, z ∈ H , (2.1.2)

(iii) Time reversal differential equation version for chordal SLEκ in the upper half-plane

∂th(t, z) =
−2

h(t, z)−
√
κBt

, h(0, z) = z, z ∈ H , (2.1.3)

There are connections between these three formulations for studying families of conformal

maps. The solution to the equation (2.1.1), i.e. the family of conformal maps satisfying (2.1.1)

is related with the family of conformal maps satisfying (2.1.2) by the fact that at each instance

of time t , the map gt(z) is the inverse of the map ft(z) . In other words, the maps ft(z) ”grow”

the curve in the reference domain, while gt(z) maps conformally the slit domain obtained by the

growing of the curve up to time t to the reference domain. The connection between the different

versions of the Loewner equations that g−t(z) have the same distribution for all fixed t as the

maps ft(z)− ζ(t) that satisfy equation (2.1.3) . This is proved in the next Lemma.

Lemma 2.1.1 (Lemma 7.6 of [8]). For all fixed t ∈ R , the mappings z → g−t(z) has the same

distribution as the map z → ft(z)− ζ(t) .
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Proof. Fix a time s ∈ R , and let

ζs(t) = ζ(s+ t)− ζ(s) .

By the shifting property of Brownian motion, we have that ζs(t) has the same distribution with

ζ . Let us consider the mapping

ĝt(z) := gs+t ◦ g−1s (z + ζ(s))− ζ(s) ,

Since gt maps-down the curve up to time t and gt+s maps down the curve obtain up to a later

time t+ s , we have that ĝ−s(z) = fs(z)− ζ(s) . Since

∂tĝt =
2

ĝt + ζs − ζt+s
=

2

ĝt + ζs(t)
,

the Lemma follows.

SLE(0)

In order to get some intuition, we first study the simplest version of chordal SLEκ in the upper

half-plane, i.e. the case κ = 0 . Let us consider the process (γt)t>0 := 2it in H̄ , the closed upper

half-plane. By definition, this process evolves along the imaginary axis and the absolute value

of it increases with the continuously increasing parameter t. This process belongs to the family

of processes SLEk for k = 0 . Throughout this Transfer Thesis, we use the standard notations

Kt = γ(0, t] = {γs : s ∈ (0, t]} , and Ht = H \Kt .

Figure 2.1.1. The conformal map that removes the slit grown up to time t

The mapping gt : Ht → H given by

gt(z) =
√
z2 + 4t2

is a conformal isomorphism of the slit domain Ht and H .

If the asymptotic behavior as |z| → ∞ of gt(z) is given by

gt(z) = z +
2t

z
+O(|z|−2) ,
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then we conclude using Riemann Mapping Theorem that this is the unique map with this

property. Thus, we have a correspondence between the family of maps gt and the path (γt)t>0 .

We now change the perspective and look at the evolution of points of the upper half-plane

individually under the family of conformal mappings (gt)t>0 via the identification gt(z) = zt .

Using the fact that the family of maps (gt(z))t>0 satisfies the Schramm-Loewner evolution

for κ = 0 , we obtain that
dzt
dt

=
2√

z2t + 4t2
.

In fact, SLE0 is obtained by iterating continuously a map gδt which ”eats” infinitesimal bits of

the form (0, 2iδt] near the origin from the upper half plane.

We investigate separately the vector field V (z) defined on H \ {0}, given by

V (z) =
2

z
=

2(x− iy)

x2 + y2
.

(i) Our first observation is that V (zt) = 2√
z2t+4t2

.

(ii) Secondly, in order to not have singularities, we introduce the stopping time

τ(z) = inf{t > 0 : γt = z} .

By definition, we have that τ(z) = y
2 if z = iy and ∞ otherwise. We clearly have that if

z is not purely imaginary, then zt → 0 as t→ τ(z) . Thus, the maximal flow of the vector

field V (zt) in H \ 0 is given by
(
gt(z) : z ∈ H̄ \ 0, t < τ(z)

)
.

(iii) In the general case, for different values of k, we expect that if the singularity point (i.e.
√
κBt) moves infinitesimally to the left, then some of the left flow lines to be moved to the

right, so the curve (γt)t>0 will turn to infinitesimally to the left. Moreover, the roughness

of the Brownian driving term will be more apparent in the evolution of the path (γt)t>0

as pictured in Fig 2.2 for κ = 1 and κ = 4.5 .

The simulations in MATLAB for the case SLE(0) are describing the dynamics of a rectangle

with long length and thin height in the upper half plane under if we run the forward or the

reverse time flow of the Loewner equation. If we split the flow into the real and the imaginary

part, we see that this respects the format of the equations(i.e. the imaginary part of the points

is decreasing under the forward flow and the imaginary part is not changing the sign, also the

points with bigger real value are moving more slowly under the flow than the other points).

One may start to ask simple questions about the flow in the case κ = 0 . One may be

interested in the time until you hit the origin under the forward flow. Is it clear that if z is

purely imaginary, say z = li, then the time until you hit the origin is given by l2i2 + 4t = 0

that gives t = l2

4 . When z is not purely imaginary, then under the forward flow it will never hit
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(a) Forward flow for κ = 0. (b) Reverse flow for κ = 0.

(a) A sample of SLEκ, κ = 1 (b) A sample of SLEκ, κ = 4.5

Figure 2.1.3. Credits to Vincent Beffara
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the origin or the real axis. We can prove that using the reverse flow. If z is purely real, then

the equation żt = 2
zt

is an equation about real functions so if you start your dynamics on the

real line, you remain on the real line for all the times under this flow. Now, let us assume that

we start to evolve from a point in the upper half plane that is not on the SLE(0) curve. Let

us assume that under this dynamics we hit the real line after finite time. Then, running the

reverse flow (i.e. the flow of the ordinary differential equation żt = −2
zt
, we do not come back

to the original point of start because the flow (backward or forward) on the real axis remains

real. The conclusion is that you do not hit the real line if you start from a point in the upper

half-plane that is not on the curve.

Let us know investigate the dynamics of the points in the upper half-plane that are in the

complement of the curve under the forward time Loewner flow. Splitting the ordinary differential

equation in the real and the imaginary part, we obtain that

dXt + idYt = 2
dt

Xt + iYt
=

(
2Xt

X2
t + Y 2

t

− i 2Yt
X2
t + Y 2

t

)
dt.

Investigating the real and the imaginary part separately, we obtain the features of the dynamics.

First, for we observe that the imaginary part of the points should decrease. Moreover, the

decrease is faster , when the real part of the point is smaller. Thus, the points that are close to

the curve (i.e. imaginary axis in this simple case) are more close to a ”vertical fall” than the one

that are having big real part. In addition, looking at the real part of the equation, we observe

that the sign of it is not changed, i.e. is always increasing. Thus, fixing a w.lo.g positive real

value and drawing a vertical line through that point, we can argue that the points on that line

not go inside of the domain formed from curve real line from 0 up to the fixed real point and

vertical line. The dynamics is moving the points to the left of that domain. Also, we observe

that this dynamics becomes slower also with the increase of the real part ( or absolute value of

the point). This effect is apparent in the next pictures that consider the cases (κ 6= 0) .

(a) The flow for a point in the comple-

ment of the curve for SLE4

(b) The flow for a point in the complement

of the curve for SLE6
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Chapter 3

The existence of the trace of SLEκ

3.1 SLE scaling

The SLE process scales like its driving process Bt . This property will be used a lot in order to

prove some other fundamental properties of the SLE process. We formalize this in the following

Proposition.

Proposition 3.1.1 (Proposition 6.5 of [8]). Let us consider the gt as being the solution to the

chordal Loewner equation and let us take r > 0 . Then ĝt(z) := r−1gr2t(rz) has the same

distribution with chordal SLEκ , i.e. if γ is an SLEκ path, then γ̂(t) := r−1γr2t has the same

distribution with γ .

Proof. Clearly, we have that ĝ0(z) = z , and the driving Brownian motion scales with the

corresponding factors in time and space, so B̂t := r−1Br2t has the same distribution as Bt .

Using Loewner equation, we then have

ˆ̇gt(z) = rġr2t(rz) =
2r

gr2t(rz)−
√
κBr2t

=
2

ĝt(z)−
√
κB̂t

,

which concludes the proof.

3.2 Derivative expectation estimates

In order to provide the technical results for this part, we make a useful time change in the

corresponding Loewner equation real and imaginary parts. With this new clock at hand, we

obtain some technical Lemmas that are crucial in the proof of the existence of the trace for the

SLE process. Recall the equations,

dXt =
−a2Xt

X2
t + Y 2

t

dt− dW (t) , dYt =
aYt

X2
t + Y 2

t

dt . (3.2.1)
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We consider the time change σ(t) = x2t + y2t , t =
∫ σ(t)
0

ds
x2s+y

2
s
. With the new time, we define the

random variables Z̃t = Zσ(t) , X̃t = Xσ(t) , and Ỹt = Yσ(t) .

We provide a martingale estimate for the backward Loewner differential equation. We start

with the following proposition, in which the polynomial condition in the hypothesis comes from

the fact that we are searching for martingales of the type Mt := Ỹ α
t (|Z̃t|/Ỹt)β|h′t(z0)|γ , where

α, β, γ depend on each other. This leads to the fact that they should satisfy a constraint.

Proposition 3.2.1 (Proposition 7.2 of [8]). Let r, b such that

r2 − (2a+ 1)r + ab = 0 ,

then

Mt := Ỹ
b−(r/a)
t (|Z̃t|/Ỹt)2r|h′t(z0)|b ,

is a martingale. Moreover,

P(|h′t(z0)| > λ) 6 λ−b(|z0|/y0)2ret(r−ab) .

Proof. By taking the complex derivative in the Loewner equation in the chain rule differentiation

for the function Lt = log h′t(z0) we obtain that Lt = −
∫ t
0

a
Z2
s
ds , and in particular, |h′t(z0)| =

exp
(
a
∫ t
0

X̃2
s−Ỹ 2

s

X̃s
2
+Ỹs

2ds
)
. Moreover, if we consider Ñt =

X̃2
t

Ỹ 2
t

1+
X̃2
t

Ỹ 2
t

, we obtain that

|h′t(z0)| = e−at exp

(
2a

∫ t

0
Ñsds

)
.

In the σ(t) time parametrization, looking at the equation for Ỹt we obtain a deterministic

one dỸt = −aỸtdt , so in this time parametrization Yt grows deterministic in an exponential

manner Ỹt = Y0e
at . At this moment, we can rephrase the formula for Mt as

Mt = y
b−(r/a)
0 e−rt(1− Ñt)

−r exp(2ab

∫ t

0
Ñsds) .

and by applying Ito’s formula, we obtain that

dMt = 2r

√
ÑtMtdB̃t ,

where B̃t =
∫ σ(t)
0

1√
X2
t+Y

2
t

dBt is the Brownian motion that we obtain in the time reparametriza-

tion. This shows that Mt is a martingale, hence

E[Mt] = E[M0] = y
b−(r/a)
0 (|z0|/y0)2r .

Note that since for r > 0 , (|Z̃t|/Yt)2r > 1 , then by Markov inequality, we have that

P(|h′t(z0)| > λ) 6 λ−b(|z0|/y0)2ret(r−ab) .
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Corollary 3.2.2 (Corrolary 7.3 of [8]). For every 0 6 r 6 2a+ 1 , there is a finite c = c(a, r) such

that for all 0 6 t 6 1, 0 6 y0 6 1 , e 6 λ 6 y−10 , we have that

P(|h′t(z0)| > λ) 6 λ−b(|z0|/y0)2rδ(y0, λ) ,

where b = [(2a+ 1)r − r2]/a > 0 and

δ(y0, λ) =


λ(r/a)−b, if r < ab ,

− log(λy0), ifr = ab ,

y
b−(r/a)
0 , if r > ab .

Proof. From dYt = 2Yt
X2
t+Y

2
t
dt , we obtain that dYt 6 a

Yt
, and hence Yt 6

√
2at+ y20 6

√
2a+ 1 .

In the last inequality, we used that t 6 1 and y0 6 1 . Using the exponential growth of Yt in this

time reparametrization, we obtain that Ỹt =
√

2a+ 1 at time T = log
√
2a+1−log y0

a . Therefore,

P(|h′t(z0)| > λ) 6 P( sup
06s6T

|h′s(z0)| > λ) .

Using that |h′t(z0)| = e−at exp
(

2a
∫ t
0 Ñsds

)
we obtain that

|h′t+s(z0)| 6 eas|h′t(z0)| . So by addition of the probabilities, we have that

P( sup
06t6T

|h′t(z0)| > eaλ) 6
[T ]∑
j=0

P(|h′j(z0)| > λ) .

Using the Schwarz-Pick Theorem for the upper halfplane we obtain that ht(z0)| 6 Imh′t(z0)/y0 =

eat . This gives a lower bound for the t that we are summing over and we obtain that via the

Proposition 3.2.1 that

P( sup
06t6T

|h′t(z0)| > eaλ) 6
∑

(1/a) log λ6j6T

P(|h′(z0)| > λ)

6 λ−b(|z0|/y0)2r
∑

(1/a) log λ6j6T

ej(r−ab)

6 cλ−b(|z0|/y0)2rδ(y0, λ) .

3.3 Existence of the SLEκ trace

Before stating the main Theorem of the section, we prove two propositions that together with

3.2.2 build the argument for the existence of trace of SLEκ for κ 6= 8 .
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Lemma 3.3.1 (Lemma 4.33 of [8]). Suppose that gt is a Loewner chain with driving function Ut

and assume that there exist a sequence of positive numbers rj → 0 and a constant c such that

|f̂ ′k2−2j (2
−ji)| 6 2jrj , k = 0, 1, . . . , 22j − 1 ,

|Ut+s − Ut| 6 c
√
j2−j , 0 6 t 6 1, 0 6 s 6 2−2j .

and

lim
j→∞

√
j/ log rj = 0 .

Then V (y, t) := f̂t(iy) is continuous on [0, 1]× [0, 1] .

Proof. By differentiating ∂tf(t, z) = −∂zf(t, z) 2
z−U(t) , f(0, z) = z, z ∈ H , we obtain that

ḟ ′t(z) = −f”t(z)
2

z − Ut
+ f ′t(z)

2

(z − Ut)2
.

Bieberbach Theorem implies that |f”t(z)| 6 6|f ′t(z)|
Im(z)2

, and that |f ′t+s(z)| 6 exp
[

6s
Im(z)

]
|f ′t(z)| .

From hypothesis, we get that for k = 0, 1, . . . , 22j − 1

|f ′t(i2−j + Uk2−2j )| 6 e62jrj , k2−2j 6 t 6 (k + 1)2−2j .

Using Distortion Theorem A.2.2, we get that for a univalent function on D , we have that

|f ′(z)| 6 12|f ′(0)| for |z| 6 1/2 . By iterating this, on a sequence of intersecting disks, we have

that connect z, w ∈ H with Im(z), Im(w) > y > 0 , for a conformal transformation f : H → D ,
then we have that

|f ′(w)| 6 144(z−w)/y+1)|f ′(z)| .

In particular, by combining the hypothesis and |f ′t(i2−j +Uk2−2j )| 6 e62jrj we obtain that there

exist c and β such tat

|f̂ ′t(i2−j)| 6 e
√
jβ2jrj , 0 6 t 6 1, j = 0, 1, 2, . . . , 2−j .

Using the distortion Theorem again but for a point that is not the lattice of space and time ,

we get

|f̂ ′t(iy)| 6 e
√
jβ2jrj , 0 6 t 6 1, 2−j < y < 2−j+1 , j = 0, 1, 2, . . . , 2−j .

By estimating the diameter of the derivative on this lattice, we get for s 6 2−2j and y, y1 6 2−j

we get that |f̂t(iy)−f̂t+s(iy)| 6 |f̂t(iy)−f̂t(i2−j)|+|f̂t(i2−j)−f̂t+s(i2−j)|+|f̂t+s(i2−j)−f̂t+s(iy)| .
The first and the third term are bounded by the estimate elaborated so far via

‖f̂t(iy)− f̂t(i2−j)| 6
∞∑
l=j

ceβ
√
lrl .
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From the assumption, the right hand side goes to 0 as j → ∞ . For the middle term, we have

by using the estimate and the format of the partial differential equation that f solves, that

|f̂t(i2−j)− f̂t+s(i2−j) 6 2s2j sup
t6r6t+s

|f ′(2−j)| 6 crj .

Since V is continuous already in (0,∞)× [0,∞) to establish the continuity on [0,∞)× [0,∞)

it suffices to show that there exists a δ(ε) such that δ(0+) = 0 and such that |V (y, t)−V (y1, s)| 6
δ(y + y1 + |t− s|) , 0 6 t, s,6 t0, y, y1 > 0 . So by using the hypothesis, we conclude.

We need another result in order to conclude the existence of the trace for SLE process. For

this we introduce the notion of accesible point . We call a point z ∈ K̂t \ ∪s<tK̂s t− accessible if

there exists a curve η : [0, 1]→ C , with η(0) = z and η(0, 1] ⊂ Ht .

Proposition 3.3.2 (Proposition 4.29 in [8]). Suppose gt is a Loewner chain with driving function

Ut and let f̂t(z) = g−1t (z + Ut) . Suppose that for each t, the limit γ(t) = limy→0+ f̂t(iy) , exists

and the function t→ γ(t) is continuous. Then gt is the Loewner chain generated by γ .

Proof. The proof relies on some Proposition 4.27 from Lawler [8] that shows together with the

condition from the hypothesis that γ(t) is the only t− accesible point. Since γ[0, t] is closed, the

same Proposition 4.27 from [8] shows that ∂Ht ∩H is contained in γ[0, t] .

In order to prove this result, we need the Lemma from the introduction also.

Lemma 3.3.3 (Lemma 7.6 in [8]). For all fixed t ∈ R , the mappings z → g−t(z) has the same

distribution as the map z → ft(z)− ζ(t) .

Theorem 3.3.4 (Rohde-Schramm Theorem). If κ 6= 8 the chordal SLEκ is generated by a path

with probability 1.

Proof. By using the scaling of the SLEκ , it suffices to prove the Theorem only for t ∈ [0, 1] .

According to the preliminary propositions it suffices to shoat that with probability 1 there exists

an ε and a random constant c (because this estimate should hold for all j′s and k′s ) such that

|f ′k2−2j (i2
−j)| 6 c2j−ε , j = 1, 2, . . . , k = 0, 1, . . . , 22j ,

|Bt −Bs| 6 c|t− s|1/2| log
√
|t− s|| 0 6 t 6 1 .

The second inequality is a consequence of the modulus of continuity for the Brownian motion

(see A.1.1 in Appendix A). For the first inequality, we use a Borel-Cantelli Lemma along with

3.3.3 lemma to find c and ε such that for all 0 6 t 6 1

P(|h′t(i2−j | > 2j−ε) 6 c2−(2+ε)j .

Notice that we apply h′t to points on the imaginary axis and that the corresponding λ = 2j−ε .
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If we consider r = a + (1/4) < 2a + 1 and b = (1+2a)r−r2
a = a + 1 + 3

16a , according to the

Corollary 3.2.2 . Thus, we are in the regime r < ab , so by the Corollary 3.2.2 we have that

P(|h′t(i2−j | > 2j−ε) 6 c2−j(2b−(r/a))(1−ε) .

Investigating the exponent of 2, we obtain that 2b− (r/a) = 2a+ 1 + 1/(8a) > 2 provided that

a 6= 1/4 . So, we can apply Borel-Cantelli argument provided that a 6= 1/4 i.e. κ 6= 8 and finish

the proof.
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3.4 Phases of SLEκ via Bessel processes

In this subsection, we analyze the phases of SLEκ as a function of the parameter κ . We show

that there exists two phase transition for values of κ > 4 and κ > 8 . We determine these regimes

not directly, but by studying the Loewner flow.

Consider the Loewner flow (gt(x) : t ∈ [0, τ(x)), x ∈ R\0 on the real line associated with the

Loewner differential equation when the driving function is
√
κBt i.e. the flow associated with

SLEκ . Recall that gt(x)− ζt → 0 as t→ τ(x) , whenever τ(x) <∞ . We introduce the notations

D =
2

κ
, Bt =

−ζ(t)√
κ

, ζ(x) = τ(x
√
κ) .

and set

Xt(x) =
gt(x
√
κ)− ζt√
κ

,

for t ∈ [0, ζ(x)) .

With this notations, Bt becomes a standard Brownian motion that starts from 0 and we

have that for Xt(x) 6= 0 for t ∈ [0, ζ(x)) we have that

Xt(x) = x+Bt +

∫ t

0

D

Xs(x)
ds .

The Bessel processes manifest some phase transition that we capture in the following propo-

sition. These results, give an interpretation of the phase transition of the SLE processes in

terms of the understanding of the Loewner flow on the real axis as a Bessel process.

Proposition 3.4.1 (Proposition 10.1 of [5]). Let x, y ∈ (0,∞) with x < y. Then

I For D ∈ (0, 1/4] , we have

P(ζ(x) < ζ(y) <∞) = 1 .

I For D ∈ (1/4, 1/2) , we have that

P(ζ(x) <∞) = 1 .

P(ζ(x) < ζ(y) <∞) = φ

(
y − x
x

)
,

where φ is given by

φ(θ) ∝
∫ θ

0

du

u2−4a(1− u)2a
.
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I For D ∈ [1/2,∞), we have

P(ζ(x) <∞) = 0,

and moreover for D ∈ [1/2,∞), we have Xt(x)→∞ as t→∞ almost surely.

Proof. Fix x > 0 and write Xt = Xt(x) ,and ζ = ζ(x); For some fixed r > 0 we define the

stopping time T (r) = inf{t ∈ [0, τ) : Xt = r} . We further assume that 0 < r < x < R for some

real numbers r and R . We use the notation S = T (r) ∧ T (R) . From Proposition (insert cit) we

have that Xt > Bt + x , for all t 6 τ , so the hitting time of the R level is almost surely finite .

For a 6= 1/2 define Mt = X1−2a
t , for t < τ .

Using Ito’s formula for Mt = X1−2a
t , we have that

dMt = (1− 2a)X−2at dXt − a(1− 2a)X−2a−1t dt = (1− 2a)X−2at dBt .

We thus obtain that MS is a bounded martingale so that using optional stopping Theorem, we

obtain that

x1−2a = M0 = E(MS) = r1−2aP(XS = r) +R1−2aP(XS = R) .

Considering a ∈ (0, 1/2) . by letting r → 0 and by using that P(XS = r) + P(XS = R) = 1 we

have that

P(T (R) 6 ζ) = (x/R)1−2a . (3.4.1)

Studying the asymptotics of the diffusion on the interval we obtain that when letting r → 0

in the case a ∈ (0, 1/2) we obtain that P(Xs = R) → P(T (R) 6 ζ) . Considering the other

possibility , by taking R→∞ we obtain that P(Xs = r)→ P(T (r) 6∞) .

By letting R→∞ in 3.4.1 , we obtain that P(ζ =∞) = 0 .

Repeating the argument in the regime a ∈ (1/2,∞) we obtain that P(Xs = r) → 0 , so

P(T (R) 6 ζ) = 1 , for all R, so P(ζ =∞) = 1 .

Using the fact that M solves an SDE with no drift, we obtain that Mt is a time-change of a

Brownian motion. Using the fact that Mt must converge almost surely as t → ∞ and that the

quadratic variation of [M ]∞ = (2a − 1)2
∫∞
0 X−4at must be finite, we obtain that Xt → ∞ as

t→∞ .

For the special case a = 1/2 , we take the process Mt = logXt, . With the same strategy as

before, we arrive via Optional Stopping Theorem to the expression

log x = P(Xs = r) log r + P(Xs = R) logR .

In the regime a ∈ (1/2,∞) we arrive at the same conclusion that P(τ =∞) = 1 . For a ∈ (0, 1/2)

we define ξ(θ) =
∫ 1
θ

du
u2−4a(1−u)2a . The mapping ξ(θ) comes in fact as a solution to the following

ordinary differential equation

ξ
′′
(θ) + 2

(
1− 2a

θ
− a

1− θ

)
ξ
′
(θ) = 0 .
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From the format of the denominator, the function also experiences a blow-up for θ = 0 in the

regime a ∈ (1/4, 1/2) , and remains finite for a ∈ (1/4, 1/2) . For fix y > X we take Rt = Yt−Xt

where Yt = Xt(y) and θt = Rt/Yt . By Ito’s formula, we have that

dRt = −aRtdt
XtYt

, dθt =

(
θt
Yt

)2(1− 2a

θt
− a

1− θt

)
dt− θt

Yt
dBt .

If we take Nt = ξ(θt) , then

dNt = ξ′(θt)dθt +
1

2
ξ
′′
(θt)dθtdθt = −ξ

′(θt)θtdBt
Yt

.

We deduce that (Nt : t 6 ζ) is a local martingale. Using the fact that Nt is the time change

of a Brownian motion, we obtain that Nt must converge to some limit as t→ ζ . Using the fact

that χ(·) is a strictly decreasing function, we obtain that θt converges to some limit θζ as t→ ζ .

Using the fact that Xt and Yt become equal above the diagonal, we obtain that if ζ < ζ(y) we

have θζ = 1 and so Nζ = 0 . However, when ζ = ζ(y) we have that θζ = 0 almost surely. Note

that, we necessarily have that [N ]ζ 6∞ and

[N ]ζ =

∫ t

0

ξ′(θs)
2θ2s

Y 2
s

ds .

If θζ > 0 then it follows that ∫ ζ(y)

0

1

Y 2
s

ds <∞ .

Consider the random variablesA(x) =
∫ ζ
0

1
X2
t
dt , and the quantitiesAn(x) :=

∫ T (2−nx)
T (2−n+1x)

1
X2
t
dt , n >

1 .

Using the strong Markov property for the Brownian motion, then the random variables

(An(x) : n ∈ N) are independent. Also, they have the same distribution by the scaling property.

We can see that for n = 1 the integral A1(x) > 0 almost surely. Then the whole series
∞∑
n=1

An(x)

is divergent and by using the fact that the series gives the value of the integral, we obtain that

if ζ = ζy then we have that θζ = 0 , ( the integral is divergent for his particular time) .

In the case a ∈ (0, 1/4], ζ = ζy would imply that Nt = ξ(θt)→∞ as t→ ζ , a contradiction

with the fact that this is a bounded martingale, so P(ζ < ζ(y)) = 1 . On the other hand, in

the regime a ∈ (1/4, 1/2) , the process N τ is a bounded martingale so we can apply optional

stopping and obtain that

φ

(
y − x
x

)
= N0 = E(Nτ ) = ξ(0)P(ζ = ζy) + 0 .

Thus, we have shown that for a ∈ (1/2,∞) we have two regimes

P(ζ < ζ(y)) =

1, if a 6 1/4

φ(y−xx ), a > 1/4.
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These results translate from Bessel flow in terms of the path γ of an SLE(κ) , in terms of

hitting probabilities of the real line.

Proposition 3.4.2 (Proposition 10.3 of [5]). Let γ be an SLEκ . Then we have the following

behaviors in terms of κ .

I For κ ∈ (0, 4] , we have that γ(0,∞) ∩ R = 0 almost surely.

I For κ ∈ (4, 8) and all x, y ∈ (0,∞), γ hits [x,∞) and

P(γhits[x, x+ y)) = φ

(
y

x+ y

)
.

I For κ ∈ [8,∞) then R ⊆ γ[0,∞) almost surely.

Proof. Fix x, y ∈ (0,+∞) and let t > 0 . If γ[0, t] ∩ (x,∞) = ∅ then by the fact that the

complement of a compact (hence closed set ) is open, we have that there is a neighborhood of

[x,∞) in H disjoint from γ[0, t] which is then contained in Ht and x /∈ K̄t . Thus we have that

ζ(x) > t . Also, if γs ∈ [x,∞) for some s ∈ [0, t] then γs ∈ K̄t and ζ(x) 6 ζ(γs) 6 t .Using

the parameter D = 2
κ in the definition of the Bessel process, we obtain that for τ(x/

√
κ)- the

lifetime of a Bessel process of parameter D -

{γ hits [x,∞)} = {τ(x/
√
κ) <∞} .

Using the Proposition 3.4.1, we obtain that

I If D ∈ [1/2,∞) then κ ∈ (0, 4] , and P(γ hits [x,∞)) = 0;

Thus, P(γ hits R \ {0}) = limn→∞ P(γ hits (−∞, 1/n] ∪ [1/n,+∞)) = 0 .

I If D ∈ (1/4, 1/2) , then κ ∈ (4, 8) so

P(γ hits [x,∞))) = 1

P(γ hits [x, x+ y))) = φ

(
y

x+ y

)
.

I If D ∈ (0, 1/4) then κ ∈ [8,∞) and so

P(γ hits [x, x+ y))) = 1 .

So, almost surely for all rationals x, y ∈ (0,∞) we have that γt ∈ [x, x + y) for some

t > 0 . Using that γ is continuous, we obtain that [0,∞) ⊂ γ(0,∞) almost surely and by

symmetry, we obtain that R ⊂ γ[0,∞) almost surely.
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Concerning the phases of SLEκ , we prove the following results.

Theorem 3.4.3 (Theorem 11.2 of [5]). Let (γt)t>0 be a SLE . Then γ is almost surely transient

for all κ′s, i.e. |γt| → ∞ as t→∞

Theorem 3.4.4 (Theorem 11.2 of [5]). Let (γt)t>0 be a SLE . Then, we have the following behav-

iors when the parameter κ changes.

I For κ ∈ [0, 4] , (γt)t>0 is a simple path almost surely.

I For κ ∈ (4, 8) ,
⋃
t>0Kt = H , almost surely and for each z ∈ H̄ \ {0} , (γt)t>0 does not hit

z almost surely.

I For κ ∈ [8,∞) , γ[0,∞) = H̄ , almost surely.

Figure 3.4.1. Possible Phases of SLE

The proofs of the Theorems is divided in several Lemmas.

Firstly, we study the regime κ ∈ (0, 4] . Then, almost surely, (γt)t>0 is a simple curve and is

transient. In order to prove this, we need the following Lemma:

Lemma 3.4.5. Let (γt)t>0 be a simple path in H starting from 0 . For fixed r ∈ (0, 1) , define the

first hitting time of the circle of radius r centered at 1 , i.e.

τ = inf{t > 0||γt − 1| = r} .
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Then,

|gτ (1)− ζτ | 6 r .

Proof. We consider the point γτ = a + ib . We consider also the orthogonal line segments that

connect a+ib to 1, i.e. I = (a, a+ib] and J = [a∧1, 1] . We know that gτ extends continuously to

R\{0} and to gτ (γτ ) = ζτ . By applying the conformal map gτ the image of I∪J is a continuous

path in H̄ . that joins ζτ and [gτ (1),∞) . So, by conformal invariance of Brownian motion, we

have that

P(BT (H) ∈ [ζτ , gτ (1)]) 6 Pgτ (iy)(BT (H\gτ (I)) ∈ gτ (I ∪ J)

= Piy(BT (Hτ\I) ∈ I ∪ J)

6 Piy(B̂T (H\I) ∈ I+ ∪ J) ,

where I+ denotes the right hand side of I . Note that gI(a + ib) = a and that gI(a+) = a + b

and also that gI(1) = a+ r , where a 6 1 . We obtain that the Lebesgue measure on the interval

of I ∪ J is bounded via Leb(gI(I
+ ∪ J)) 6 r . Using the normalization at ∞ of gτ , we have that

gτ (iy)− iy → 0 as y →∞ . Then by the Proposition A.2.1 we obtain the desired estimate by a

multiplication with πy and letting y →∞ .

Proposition 3.4.6 (Theorem 11.1 of [5]). Let (γt)t>0 be an SLEκ with κ ∈ (0, 4]. Then, almost

surely, (γt)t>0 is a simple curve and is transient, i.e. |γt| → ∞ as t→∞ .

Proof. Let κ ∈ (0, 4] . We use the notation Ks,s+t = gs(Ks+t \Ks) and K
(s)
t = Ks,s+t−ζs . Then,

(K
(s)
t ) is an SLEκ . Using the existence of the trace Theorem (Rohde-Schramm Theorem) we

obtain, that almost surely, for all rational s > 0 and all t > 0 , g−1Ks,s+t extends continuously to

H , and g−1Ks,s+t(z)→ γ
(s)
t + ζs as z → ζs+t . Using again the existence of the trace Theorem with

the composition of conformal maps, we obtain that

γs+t = lim
z→ζs+t,z∈H

g−1s (g−1Ks,s+t(z)) = g−1s (γ
(s)
t + ζs) .

Since we have hcap(Kt)=2t for all t > 0 almost surely, then there is no (non-degenerate) interval

on which γ(t) is constant. Thus, for r, r′ > 0 with r < r′ , there exists a rational s ∈ Q such

that γs 6= γr . If we consider, t = r′ − s , then we have that γr 6= γr′ .

In order to prove the transience of the SLEκ in this regime, we consider two cases.

I The case κ ∈ (0, 4) . By the order of hitting the origin argument in 3.4.1 we know that

inft>0(gt(1)−ζt) > 0 almost surely. Using the previous Lemma, we obtain that necessarily

inft>0 |γt − 1| > 0 , almost surely. Let us set t = 1 , i.e. we look at the moment t = 1 in

time. We have that g1 extends continuously to R \ {0} and that γ1 ∈ H . We consider the

points a+ = limx→0+ g1(x) and a− = limx→0− g1(x) . When, mapping out the curve up to

time 1 , we obtain that a− < ζ1 = g1(γ1) < a+ . We consider the sets

B+ = {z ∈ H1|g1(z)− a+| < r+} ,
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B+ = {z ∈ H1|g1(z)− a+| < r+} ,

where r± = inft>0 |γ1t + ζ1 − a±| . Note that by scaling and r+ > 0 , almost surely. Note

that, γt /∈ B+ ∪ γ(0, 1] ∪ B− for all t > 0 . By considering the simple paths [0, 1] ∪ γ(0, 1]

and γ(0, 1]∪ [−1, 0] , we obtain that B+ ∪ γ(0, 1]∪B− is a neighborhood of the origin and

hence |γt| is almost surely positive and hence transient when t→∞ . ( i,e, if we consider

c = limt→∞ |γt| , then by scaling P(c > r) is the same for all r > 0 so it is sufficient to

prove that P(c > 0) = 1 that we already did.)

I The case κ = 4 . In this case, we develop the argument by looking at the dynamics under

the conformal map gt of three specific points by considering Xt = gt(1/4) , Yt = gt(1/2)

and Zt = gt(1) . If it were the case that |γ(t) − 1| 6 r , for all r ∈ (0, 1) , then it can be

shown that the quantity (Zt − Xt)/(Yt − Xt) → ∞ . So, to show transience of the trace,

we have to show that with probability 1 we have that limt→∞
Zt−Xt
Yt−Xt <∞ .

So the chosen points are following a Bessel flow with parameter a = 2/κ = 1/2 . By

applying Ito’s formula, we obtain that

d

[
log

Zt −Xt

Zt

]
= −1

2

1

XtZt
dt− 1

Zt
dBt , (3.4.2)

d

[
log

Zt −Xt

Yt −Xt

]
=

1

2

Zt − Yt
XtYtZt

dt .

Hence we have the quantity limt→∞ log Zt−Xt
Yt−Xt = log Z0−X0

Y0−X0
+ 1

2

∫∞
0

Zt−Yt
XtYtZt

dt .

First, note that by the choice of points, we have that (Zt − Yt)/Zt 6 (Zt −Xt)/Zt 6 Rt where

Rt is defined by the following SDE

d[logRt] = − 1

2Z2
t

dt− 1

Zt
dBt ,

with initial condition R0 = (Z0 − X0)/Z0 = 3/4 . We have this SDE for Rt because we want

a quantity that stochastically dominates the quantity in 3.4.2, so it should solve a SDE with

a higher drift coefficient for the same realization of Brownian motion. This SDE gives us the

natural time change
∫ r(t)
0 Z2

sds = t . Then by integrating the SDE obtain after using this time

change, we obtain that logRr(t) = log(3/4)− t/2−Bt .In particular, with probability 1 there is

a random constant C1 = C1(ω) such that Rr(t) 6 C1e
−t/4 , for all t . Thus, for sufficiently large

t we have that Rt 6 1/2 i.e. Xt > Zt/2 . So we arrived to prove that with probability 1 we have

that
∫∞
0 RtZ

−2
t dt is finite. So by a sequence of approximations and using the Strong Markov

Property for Brownian Motion, we obtain that∫ ∞
0

RtZ
−2
t dt =

∞∑
k=0

∫ r(k+1)

r(k)
RtZ

−2
t dt 6

∞∑
k=0

C1e
−k/4 <∞ ,

that gives the desired conclusion.
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In the regime κ ∈ (4, 8) the curve is not simple or space-filling. We call this regime swallowing

phase . In this regime, the curve has almost surely double-points and is transient. This is the

content of the following result.

Proposition 3.4.7 ([Proposition 6.10 of [8]). Let γ be a SLEκ with κ ∈ (4, 8) . Then, with proba-

bility one, ⋃
t>0

K̄t = H̄ ,

and γ[0,∞) ∩H 6= H . Also, dist(0,H \Kt)→∞ , i.e. |γ(t)| → ∞ as t→∞ . Moreover, γt has

double points, almost surely.

Proof. To show the first part of the proposition, we consider the following notion. We callz ∈ H ,

swallowed if Tz 6∞ but z /∈ ∪t<TzKt . Note that, if z is swallowed then exists a ball B around

it such that w is also swallowed for all w ∈ B . By Proposition 3.4.1 , we have that there exists

x > 1 such that Tx = T1 . By scaling of the Bessel process, we can obtain that such a point

x > 1 exists almost surely. Also, the point with this hitting time of the origin and largest

absolute value is γ(T1) . If we consider ε = dist(1, γ[0, T1]) , then all points in z ∈ H ∩ B(1, ε)

are swallowed. This shows that γ[0,∞) ∩ H 6= H . (i.e. on the event {γζx < y} , there is a

neighborhood of x in H which does not meet γ and from this positive probability we obtain

via Blumenthal’s 0-1 law an almost sure result). If we consider T to be the first time that −1

and 1 are swallowed, then by topological consideration there is a disk D about origin such that

D ∩H ⊂ KT .

In particular, for each u > 0 there is an ε > 0 such that P(B(0, ε) ∩ H ⊂ KT ) > 1 − 2u .

Moreover, there exists a t = tε,u such that P(B(0, ε) ∩ H ⊂ Kt) > 1 − u . So by scaling, this

inequality holds for all ε (for a t depending on ε). This gives the first assertion and also the

transience via the following zero-one argument. The fact that P(B(0, ε) ∩ H ⊂ Kt) > 1 − u
gives that P(dist(0,H \Kt) = δ > 0 for some t > 0. This extends to all t by scaling with the

same δ . So, the distance between 0 and Kt is strictly greater than 0 for all t with probability δ .

P(dist(0, Ht) > 0 for all t¿0) = δ and via Blumenthal’s 0 − 1 law, δ = 1 . Finally, via a scaling

argument, we obtain that for all r <∞ and t→∞

P(dist(0, Ht) 6 r) = P(dist(0, H1) 6 r/
√
t)→ 0 .

In order to show that γt has double points almost surely, we consider the set non-decreasing

set in t , At := {γs = γ′sfor some distinct s, s’ ∈ [0, t]} . By scaling we argue that the sets At have

the same probability p . We obtain then that p = P(∩tAt) and as ∩tAt ∈ F0+ , we obtain that

via Blumenthal’s 0-1 law that p = 0 or p = 1 . Furthermore, by topological considerations we

have that ∂K1 ∩ H ⊂ γ[0, 1] , so γ has double points (because it filled somehow the hull) with

positive probability, and by the previous result almost surely.

Remark 3.4.8. The regime κ > 8 is the regime when the curve γt is space-filling. This result is

proved in detail in Thereom 7.9 in [8] .
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3.5 The Hölder continuity of SLEκ maps

With the typical notations from the Bessel process approach to the Loewner flow, we define

α(κ) = α(2/a) to be the supremum over all α such that if t > 0 a.s. the function z → g−1t (z) is

Hölder α-continuous. We have the following asymptotics statement for α(κ).

Proposition 3.5.1 (Proposition 7.7 of [5]). For every κ 6= 4 , α0(κ) > 0 . Moreover,

lim
κ→∞

α0(κ) = 1 , lim
κ→0+

α0(κ) =
1

2
.

Proof. Using the scaling of the SLE we can restrict our analysis to t 6 1 and to the rectangle

−1 < Re(z),Re(w) < 1 , and also to 0 < Im(z), Im(w) 6 1 . It suffices to find a c such that

|f̂t(
j

2n
+

i

2n
)| 6 c2n2−αn , n = 0, 1, 2, . . . , , j = 2−n, . . . 2n ,

because by the Distortion Theorem A.2.2 applied for a point in the grid and for one point

with coordinates situated on the complement of the grid in the rectangle, we would have that

|f̂t
′
(x + iy)| 6 c1Im(y)α−1 , for −1 6 x 6 1 , 0 < y 6 1 . By integrating this formula and using

the fact that the absolute value of the integral is less than the integral of the absolute value, we

obtain the conclusion.

Using Corollary 3.2.2 we obtain that for any 0 < r 6 2a+ 1 and b = (1+2a)r−r2
a > 0 we have

that

P(|f̂t(
j

2n
+

i

2n
)| 6 c2n2−αn) 6 c(1 + 22n)r2−n(2b−(r/a))(1−α) , if r < ab ,

P(|f̂t(
j

2n
+

i

2n
)| 6 c2n2−αn) 6 c(1 + 22n)r2−nb(1−α)n , if r = ab ,

P(|f̂t(
j

2n
+

i

2n
)| 6 c2n2−αn) 6 c(1 + 22n)r2−nb(1−α)2n((r/a)−b) , if r > ab ,

By choosing according the parameter α we obtain that if

α <
2b− (r/a)− 2r − 1

b+ max(0, b− (r/a)
,

then
∞∑
n=1

2n∑
j=2−n

P(|f̂t(
j

2n
+

i

2n
)| 6 c2n2−αn) < c

∞∑
n=1

2−nε <∞ ,

for some c and ε > 0 . And applying the Borel-Cantelli Lemma, we obtain that

|f̂t(
j

2n
+

i

2n
)| 6 c2n2−αn , n = 0, 1, 2, . . . , , j = 2−n, . . . 2n ,

Following a careful analysis of the bound α < 2b−(r/a)−2r−1
b+max(0,b−(r/a) we have that for a < 1/4 we can

choose r = 2a and b becomes 2 . This choice gives 2b − r/a − 2r − 1 > 0. On the other hand

, if a > 1/6 we let r = (a/2) + (1/4) and then b = 3a/4 + 3/4 + 2/(16a) . This choice makes
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2b − r/a − 2r − 1 positive unless a = 1/2 and here is where we loose the case κ = 4 . So the

denominator is always positive unless a = 1/2 . If we let r =
√
a and b = 2

√
a − 1 + a−1/2 , we

see that the paths are α-Hölder continuous for all

α <
2
√
a− 3 + a−1/2

2
√
a− 1 + a−1/2 + max(0, 2

√
a− 1)

,

and by taking the limits in κ (i.e. in 2/a) we obtain the asymptotics for the Hölder exponent.

3.6 An important observable: the left passage probability of chordal

SLEκ in H

In this section we give an overview of Professor’s Oded Schramm paper A percolation formula

in which is computed the probability that chordal SLE passes through the left or to the right

of some fixed point z0 . The terminology used in the SLE literature for this kind of quantities

is observable . This explicit formula was used to prove other results involving SLE and is used

also in the paper of Prof. Brent Werness that we will present in detail in the last Chapter of

this essay. We start with mentioning the relevant properties of SLE that are used in order to

describe this observable .

Some of the properties of the trace are that γ is a.s. transient , i.e. limt→∞ |γ(t)| =∞ and

that when κ ∈ (0, 8) it almost surely does not hit fixed points in the upper half plane, i.e. for

every z ∈ H , we have P[z ∈ γ[0,∞)] = 0 . It is then natural to ask whether if the SLE trace

passes to the left or to the right of a fixed point z0 = x0 + iy0 in the upper half-plane. The

quantity that describes this phenomena is the winding number of the following curve. Let D be

the unit disk. We define βt to be the curve that connects the tip γt to 0 via βt is the path that

follows the arc |γt|∂D from the tip to the real number γ(t) clockwise and then the real axis up

to 0, i.e. is the circular arc that connects the tip with the point |γ(t)| situated at the real axis

concatenated with the segment [0, |γ(t)|] . From the topological point of view γ passes to the left

of the z0 if the winding number of γ[0, t] ∪ βt around z0 is 1 for all large t . This leads to the

following Theorem.

Theorem 3.6.1 (Theorem 2 of [10]). Let κ ∈ [0, 8) and let z0 = x0 + iy0 ∈ H . Then the trace γ

of chordal SLEκ satisfies

P[γ passes to the left of z0] =
1

2
+

Γ(4/κ)
√
πΓ(8−κ2κ )

x0
y0
F2,1(

1

2
,

4

κ
,
3

2
,
−x20
y20

) .

In order to prove this result , we need the following Lemma. Let xt := Regt(z0) −W (t) ,

yt := Imgt(z0) and wt = xt
yt
.

Lemma 3.6.2. Almost surely, γ is to the left (respectively to the right) of z0 if limt→τ(z0)wt = +∞.
(respectively, −∞ .)

28



Proof. [Sketch of the proof of the Lemma] The proof is divided into two sections. First, let

us suppose that κ ∈ [0, 4] . In this regime we know from [9] that a.s. γ is a simple path and

moreover by the previous remark about hitting of the points in the complex plane by the curve

that τ(z0) =∞ . We consider the arc of radius r for some r >> |z0| ( r much more larger than

|z0|) and we consider τr to be the first time that the tip of the curve touches the arc of radius

r , i.e. |γ(t)| = r . We further define the domain D+ ⊂ H be the domain whose boundary is

composed of [0, r]∪γ[0, τr] and an arc on the boundary of r∂D . Furthermore D−(r) = rD\D+(r) .

Given γ we start a Brownian motion from z0 . For very large r the Brownian motion will hit

with very high probability γ[0, τr] ∪ R before exiting the disk r∂D . If we consider z0 ∈ D+(r)

then the Brownian motion started from z0 is likely to hit the SLE trace or the interval [0, r]

from within D+(r) . If we map-down the curve up to time τr , (i.e. by definition this is what the

mapping gτr is doing) then the tip it is mapped to W (τr). We further use that the harmonic

measure is conformally invariant. Thus, the harmonic measure in H of [W (τr,∞)] from gτr(z0)

( this is where the point z0 is mapped into the new domain) is close to 1 if z0 ∈ D+(r) and close

to 0 if z0 ∈ D−(r). Using the definition of xt and yt we have that the harmonic measure in H
of [0,∞) from xτr + iyτr is close to 1 if z0 ∈ D+(r) and close to 0 if it is in the complement.

By definition of wt if follows that wt is either far left or either far right ( this is the information

that we get from the asymptotics of harmonic measure), i.e. wτr is close to +∞ or to −∞ .

This finishes the argument in the case κ ∈ [0, 4] . For κ ∈ (4, 8) the analysis is similar except

that we are dealing with a more complicated picture. In this regime γ is not a simple path and

τ(z0) is finite (z0 is in a bounded component of R ∪ γ[0, τ(z0)]) according to [9]. Clearly, z0

is not in a bounded component of R ∪ γ[0, t] when t < τ(z0) . Thus, at time τ(z0) the path γ

encloses a loop around z0 . To answer the question of left/right passage the question becomes

equivalent to z0 being surrounded by a clockwise loop or a counter-clockwise loop . By applying

the conformal mapping that maps down the hull as above, we obtain as in the simple curve case

the asymptotics of wt → +∞ or −∞ , as t→ τ(z0) .

We now give a brief proof of the Theorem.

Proof. [Sketch of the proof of the Theorem]

First, we split the Loewner differential equation into the equation for the real part and the

equation for the imaginary part. This gives

dxt =
2xt

x2t + y2t
dt− dW (t) , dyt =

−2yt
x2t + y2t

dt . (3.6.1)

Applying Ito’s formula for the function f(x, y) = x
y and using the fact that the quadratic

variation terms all vanish due to the fact that f
′′
(x) = 0 , we obtain that

dwt = −dWt

yt
+

4wt
x2t + y2t

dt .
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We naturally provide the time change

u(t) =

∫ t

0

dt

y2t
,

and setting

W̃ (t) =

∫ t

0

dW (t)

yt
,

we obtain a new SDE

dw = −dW̃ +
4w

w2 + 1
du . (3.6.2)

Note that we choose this time change in order to have W̃√
κ

a Brownian motion as a function of u (

it can be easily checked via the fact that the quadratic variation of the W̃ process that is defined

via an SDE with no drift is u ). Also in this new SDE we are left with one single variable that

is the argument of the point. This is a consequence of the scale invariance. We apply right now

classical Stochastic Analysis results by considering the diffusion for w. Given a starting point ŵ

given a, b ∈ Rwith a < ŵ < b , we compute the probability that w will hit b before a . We denote

this probability with ha,b(ŵ) . From standard Stochastic Analysis we know that h(wu) is a local

martingale. We are now trying to obtain the explicit form of this martingale. Considering (for

the moment) h smooth and applying Ito’s formula, we obtain that h should satisfy the following

ODE ( this ODE is the result of considering the coefficient in front of dt to be 0 since h is a

martingale so there is no drift term)

κ

2
h”(w) +

4w

w2 + 1
h
′
(w) = 0 , h(a) = 0 , h(b) = 1 . (3.6.3)

By the maximum principle , these equations have a unique solution and moreover these solutions

can be expressed in terms of hypergeometric functions like

h(w) =
f(w)− f(a)

f(b)− f(a)
, (3.6.4)

where f(w) := F2,1(
1
2 ,

4
κ ,

3
2 ,−w

2)w . Using this explicit form of h we can dispose the assumption

that h is smooth because we have automatically that for h of this specific form the dt part

is automatically 0 since it solves the corresponding ODE. So in some sense, we guessed the

martingale. By uniqueness it follows easily that it must be also equal to h . By standard theory

about hypergeometric functions for κ < 8 it follows that

lim
w→∞

f(w) = ±
√
πΓ((8− κ)/(2κ)

2Γ(4/κ)
. (3.6.5)

In particular, the limit is finite, which shows that limb→∞ha,b(w) > 0 for all w > a , hence the

diffusion is transient (i.e. there is a non-zero probability to hit the ”infinity” level). We have

the formula

P[ lim
u→+∞

wu = +∞] =
f(ŵ)− f(−∞)

f(∞)− f(−∞)
. (3.6.6)

The previous Lemma gives the desired conclusion.
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Appendix A

A.1 Pathwise estimate for Brownian Motion

Proposition A.1.1. Let Bt be a standard one-dimensional Brownian motion. Let

Mn = max
j=0,...,2n−1

sup
06t62−n

|Bj2−nt −Bj2−n |.

Then

lim
n→∞

Mn√
2−n log(2n)

=
√

2 .

Proof. For X a standard normally distributed random variable we obtain via direct estimates

of the density the following bounds

e−
(a+1)2

2 6
√

2πP(X > a) 6 e−
a2

2 .

Using the independence of increments and the scaling property of Brownian motion, we have

for c > 0 that

P(Mn 6 c2−
n
2
√
n) 6

2n−1∏
j=0

P(|Bj2−nt −Bj2−n | 6 c2−n/2
√
n)

= |P(|B1| 6 c
√
n)|2n

6 |1− (
√

2/πe−(c
√
n+1)2/2|2n

6 exp(−2n(
√

2/πe−(c
√
n+1)2/2)) .

Let us set Cn =
√

2 log 2 − 2n−1/2. Then we can form the events An := {Mn 6 Cn2−n/2
√
n} .

By applying the previous estimate, we obtain that

∞∑
n=1

P(Mn 6 Cn2−n/2
√
n) 6∞ ,

and hence by applying Borel-Cantelli we obtain that a.s.

lim inf
n→∞

Mn√
2−nn

>
√

2 log 2 .
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Reversibly, we use the reflection principle for one-dimensional Brownian Motion, i.e.

P( sup
06s6t

Bs > a) = 2P(Bt > a) .

For c >
√

2 log 2 , we have that

P(Mn > c2−
n
2
√
n) 6 P( sup

06t62−n
|Bt| > c2−n/2

√
n)

6 2n4P(B1 > c
√
n)

6 (4
√

2π)2ne−c
2n/2

6 (4
√

2π) exp(−n(c−
√

2 log 2)2/2) .

If we choose Cn =
√

2 log 2 + n−1/4 , we get that

∞∑
n=1

P(Mn > Cn2−n/2
√
n) 6∞ ,

and hence by Borel-Cantelli, we have with probability 1 that

lim sup
n→∞

Mn√
2−nn

6
√

2 log 2 .

A.2 Estimate for the mapping-out function and the Distortion Theorem

Proposition A.2.1. Let S ⊂ δH be a measurable set on the Martin boundary of H . Then

lim
y→∞,x/y→0

πyPx+iy(B̂T (H) ∈ S) = Leb(gK(S)) .

Proof. Consider the map gK(x + iy) = u + iv . Then as y → ∞ and x/y → 0 , we have that

u/y → 0 and v/y → 1 . Using the conformal invariance for of the Brownian motion and the

(known) formula for the density of the harmonic measure in H , we have that

Px+iy(B̂T (H) ∈ S) = Pu+iv(BT (H) ∈ gK(S)) =

∫
gK(S)

v

π((t− u)2 + v2)
dt .

A second result that we use is the Distortion Theorem for univalent functions. For this,

we consider S to be the set of univalent functions on the unit disk that fix the origin and have

f ′(0) = 1 . Note that Riemann Mapping Theorem tells us that we can study the simply connected

domains by considering the study of univalent functions on D . In the following, we present the

following Distrotion Theorem that is used throught the Thesis. Its proof relies on an estimate

that the reader can find in [8], Proposition 3.20 .
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Theorem A.2.2. For f ∈ S and z ∈ D , we have that

1− |z|
(1 + |z|)3

6 |f ′(z)| 6 1 + |z|
(1− |z|)3

.

Proof. Due to the fact that S is closed under conjugation by rotations, it is enough to prove the

estimate for x ∈ (0, 1) on the real line. Using Koebe 1/4 Theorem, we prove that for f ∈ S , we

have |f ′| 6= 0 (for the precise statament , look at Corollary 3.19 in [8] . Since the derivative of a

holomorphic function is holomorphic and f ′(0) = 1 , we can define an analytic function log f ′ .

i.e. we find h analytic such that eh = f ′ . Using that log z = log |z|+ i arg(z) , we have that

x∂xRe(h(x)) = Re

(
xf”(x)

f ′(x)

)
.

Thus by the technical estimate in Proposition 3.20 we obtain that

2x− 4

1− x2
∂x log |f ′(x)| 6 2x+ 4

1− x2
,

and since log |f ′(0)| = 0 we can integrate the inequalities and after exponantiating we obtain

the bounds.
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