# Pathwise and probabilistic analysis in the context of Schramm-Loewner Evolutions (SLE)

#### Vlad Margarint

NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai margarint@nyu.edu

> NYU Shanghai, 10-10-2019

Vlad Margarint (NYU Shanghai)

SDEs in the study of SLE

NYU Shanghai,10-10-2019

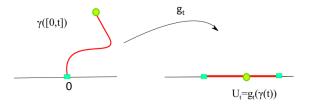
1 / 14

#### Introduction to SLE

- 2 Backward Bessel SDE and SLE
  - Are the conformal welding homeomorphisms continuous in  $\kappa$ ?
  - New structural information about the backward SLE traces.
- 3 A radius independent SDE in the context of backward Loewner differential equation
  - The explicit law of the contangent of the argument of points under the backward Loewner flow.

## Conformal maps and the Loewner equation

• In general, for a non-self crossing curve  $\gamma(t) : [0, \infty) \to \overline{\mathbb{H}}$  with  $\gamma(0) = 0$  and  $\gamma(\infty) = \infty$ , we consider the simply connected domain  $\mathbb{H} \setminus \gamma([0, t])$ .



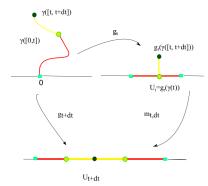
- Using the Riemann Mapping Theorem for the simply connected domain ℍ \ γ([0, t]), we have a three parameter family of conformal maps g<sub>t</sub> : ℍ \ γ([0, t]) → ℍ.
- Loewner Equation encodes the dependence between the evolution of the maps g<sub>t</sub> when the curve γ([0, t]) grows.

Vlad Margarint (NYU Shanghai)

SDEs in the study of SLE

### Conformal maps and the Loewner equation

• Is there a way to use  $g_t$  to find  $g_{t+dt}$ ?



• The precise dynamics is encoded by the Loewner Differential Equation

$$\partial_t g_t(z) = rac{2}{g_t(z) - U_t}, \quad g_0(z) = z$$

• To output random continous curves,  $U_t$  has to be a random continous driver. Moreover, the random driver  $U_t$  induces a law on the curves  $\gamma(t) := \lim_{y \to 0+} g_t^{-1}(iy)$ .

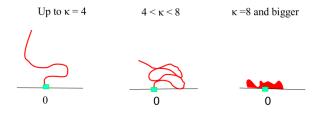
#### Definition (Schramm)

Let  $B_t$  be a standard real Brownian motion starting from 0. The chordal SLE( $\kappa$ ) is defined as the law on curves induced by the solution to the following ordinary differential equation

$$\partial_t g_t(z) = rac{2}{g_t(z) - \sqrt{\kappa}B_t}, \quad g_0(z) = z.$$

## SLE phase transitions

• It is proved that there are two phase transitions when  $\kappa$  varies between 0 and  $\infty$  .



• In order to show this, set  $X_t(x) := \frac{g_t(x\sqrt{\kappa}) - \sqrt{\kappa}B_t}{\sqrt{\kappa}}$ . Thus, for all  $x \in \mathbb{R} \setminus \{0\}$  and all times t up to  $X_t(x) \neq 0$ , we have

$$X_t(x) = x + B_t + \int_0^t \frac{2/\kappa}{X_s} ds.$$

6 / 14

• The forward and backward Loewner Differential Equation

$$\dot{g}_t(z) = rac{2}{g_t(z) - U_t}, \quad \dot{h}_t(z) = rac{-2}{h_t(z) - U_t}.$$
 (1)

• For  $U_t = \sqrt{\kappa}B_t$ , via  $h_t(z) - \sqrt{\kappa}B_t = z_t$ , we obtain

$$dz_t = \frac{-2}{z_t} dt - \sqrt{\kappa} dB_t.$$
<sup>(2)</sup>

7 / 14

## The backward Bessel SDE in the context of SLE

Extending the maps to the real line, we obtain a backward Bessel process

$$dZ_t = rac{-2/\kappa}{Z_t} dt + dB_t \,, \ \ Z_0 = x \in \mathbb{R}.$$

• We have  $d(\kappa) = 1 - 4/\kappa$ . Thus,

 $d(\kappa) \leq 0, \quad \kappa \leq 4, \text{ origin is absorbing},$ 

 $d(\kappa) > 0$ ,  $\kappa > 4$ , origin is reflective.

Are the conformal welding homeomorphisms continuous in κ?
 Can we obtain some new structural information about the backward SLE<sub>κ</sub> traces ?

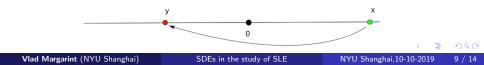
## Continuity of the welding homeomorphism

 Previous work: S. Sheffield [2010]; K. Astala, P. Jones, A. Kupiainen, E. Saksman [2011]; S. Rohde and D. Zhan [2013]; W.Qian, J. Miller, Oliver McEnteggart [2018].

We study the conformal welding homeomorphism: two points x > 0 and y < 0 are to be identified if they hit zero simultaneously under the backward Loewner differential equation.

#### Theorem

The welding homeomorphism induced by the backward Loewner differential equation on the real line when driven by  $\sqrt{\kappa}B_t$  is sequentially continuous in the parameter  $\kappa$ , for  $\kappa \in [0, 8/3)$ , a.s. everywhere except at most countably many points on the real axis.



## Phase transition and structural information about the backward SLE traces

#### Theorem

- For κ ∈ [0,4], for any t ∈ [0, T], a.s. there is a unique solution of the backward Loewner differential equation started from the origin.
- For  $\kappa > 4$  a.s. there are at least two solutions.
- For  $\kappa \in (4, \infty)$ , on macroscopic excursions from the origin of the squared Bessel process obtained from extensions of the backward  $SLE_{\kappa}$  maps on the real line, we obtain macroscopic hulls and macroscopic double points of the backward  $SLE_{\kappa}$  trace.
- Key point: Low dimensional information excursion theory of Bessel processes give structural information about the traces.
- Corollary: a.s. simpleness/non-simpleness of the trace equivalent with behaviour of Bessel at origin (related with question posed by Prof. Peter Friz).

### A time change of the Loewner differential equation

• For  $z_t = x_t + iy_t$  we obtain the coupled equations

$$dx_t = \frac{-2x_t}{x_t^2 + y_t^2} dt - \sqrt{\kappa} dB_t$$
,  $dy_t = \frac{2y_t}{x_t^2 + y_t^2} dt$ .

Furthermore,

$$d\frac{x_t}{y_t} = -\frac{\frac{4x_t}{y_t}}{x_t^2 + y_t^2}dt - \frac{\sqrt{\kappa}dB_t}{y_t}$$

• Using  $u(s) = \int_0^s \frac{dt}{y_t^2}$ ,  $\tilde{B}_{u(s)} = \int_0^s \frac{dB_t}{y_t}$ , we obtain the following SDE

$$dT_u = -4\frac{T_u}{1+\kappa T_u^2}du + d\tilde{B}_u.$$
(3)



#### Theorem

Let us consider the functions  $f \in L^{1}(\mu)$ , where  $\mu(dx) = \frac{dx}{(1+x^{2})^{4/\kappa}}$ . The process  $T_{\mu}$  has stationary distribution with density  $\rho(T) = C \frac{1}{(\kappa T^{2}+1)^{4/\kappa}}, \quad \rho(T) \sim \frac{1}{T^{8/\kappa}} \text{ as } T \to \infty.$  For  $\kappa < 8$ , a.s.  $\left| \frac{1}{u(S,\omega)} \int_{0}^{u(S,\omega)} f(T_{s}(\omega)) ds - \mu(f) \right| \xrightarrow{S \to \infty} 0.$ 

For  $\kappa < 8$ , we obtain family of random times  $s(\omega)$  on which  $ctg(arg(h_{s(\omega)}(i))) \rightarrow \mu(f)$ .



• Quasi-sure Stochastic Analysis and the stability properties of SLE traces and related objects.

$$|\tilde{h}_t'(z_0)| = e^{-at} \exp\left(2a \int_0^t \frac{\tilde{K}_s^2 + 1}{\tilde{K}_s^2 - 1} ds\right), \ d\tilde{K}_t = 2a\tilde{K}_t dt + \sqrt{1 + \tilde{K}_t^2} d\tilde{B}_t.$$

[Also interesting in the context of Growth Models.]

- New framework in Rough Path Theory: Pathwise analysis of Singular RDEs (LDE). [soon visit MPI]
- Random Matrix Theory and multiple radial SLEs :
- George A., Jianping J., Joseba D., Eric E.;

## Thank you for your attention!