Truncated Taylor approximation of Loewner dynamics Supervised by Prof. Dmitry Belyaev and Prof. Terry Lyons

Vlad Margarint

Dept. of Mathematics, University of Oxford vlad.margarint@maths.ox.ac.uk

Berlin WIAS
August 2016

Overview

(1) Introduction to SLE
(2) The Rough Paths approach: Explicit truncated Taylor approximation
(3) Perspectives
(4) References

Conformal maps

- Examples of conformal maps from upper halfplane with a slit to the upper halfplane \mathbb{H}.

2)

Conformal maps and the Loewner equation

- In general, for a non-self crossing curve $\gamma(t):[0, \infty) \rightarrow \overline{\mathbb{H}}$ with $\gamma(0)=0$ and $\gamma(\infty)=\infty$, we consider the simply connected domain $\mathbb{H} \backslash \gamma([0, t])$.

- Using the Riemann Mapping Theorem for the simply connected domain $\mathbb{H} \backslash \gamma([0, t])$, we have a three real parameter family of conformal maps $g_{t}: \mathbb{H} \backslash \gamma([0, t]) \rightarrow \mathbb{H}$.
- Loewner Equation encodes the dependence between the evolution of the maps g_{t} when the curve $\gamma([0, t])$ grows.

Description of the conformal maps

- Setting the behaviour of the mapping at ∞ as $g_{t}(\infty)=\infty$ and $g_{t}^{\prime}(\infty)=1$, we write the Laurent expansion at ∞ of g_{t} as

$$
g_{t}(z)=z+b_{0}+\frac{b_{1}}{z}+\frac{b_{2}}{z^{2}}+\ldots
$$

- We fix the third paramater by choosing $b_{0}=0$.
- The coefficient $b_{1}=b_{1}(\gamma([0, t]))$ is called the half-plane capacity of $\gamma(t)$ and is proved to be an additive, continous and increasing function. Hence, by reparametrizing the curve $\gamma(t)$ such that $b_{1}(\gamma([0, t]))=2 t$, we obtain

$$
g_{t}(z)=z+\frac{2 t}{z}+\ldots
$$

Conformal maps and the Loewner equation

- Is there a way to use g_{t} to find $g_{t+d t}$?

- In order to answer this question, we have to describe to find a way to describe the mapping $m_{t, d t}: \mathbb{H} \backslash g_{t}(\gamma[t, t+d t]) \rightarrow \mathbb{H}$.

The Loewner equation and the square root map

- The square root map that we investigated in the beginning gives the description of the 'infinitesimal mapping' $m_{t, d t}$.

- Heuristically, $m_{t, d t}(z)=U_{t+d t}+\sqrt{\left(z-U_{t}\right)^{2}+2 d t} \approx z+\frac{2 d t}{z-U_{t}}$.
- Furthermore, $g_{t+d t}(z) \approx g_{t}(z)+\frac{2 d t}{g_{t}(z)-U_{t}}$.
- We obtain the Loewner Differential Equation

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z
$$

Loewner equation and random curves in the upper half-plane

- So far, we adopted the perspective that given the curve γ_{t}, the conformal maps g_{t} must satisfy

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z
$$

with $U_{t}=g(\gamma(t))$.

- From now on, we take the dual perspective. Given the driving function $U_{t}:[0, \infty) \rightarrow \mathbb{R}$, we determine g_{t}. Then, the maps g_{t} determine the curve $\gamma(t)$.
- To output random continous curves, U_{t} has to be a random continous driver. Moreover, the random driver U_{t} induces a law on the curves $\gamma(t)$.

Definition of SLE and dependence on κ

Definition

Let B_{t} be a standard real Brownian motion starting from 0. The chordal $\operatorname{SLE}(\kappa)$ is defined as the law on curves induced by the solution to the following ordinary differential equation

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-\sqrt{\kappa} B_{t}}, \quad g_{0}(z)=z
$$

Figure: SLE(1): Credit Prof. Vincent Beffara

Figure: SLE(3.5): Credit Prof. Vincent Beffara

Figure: SLE(4.5): Credit Prof. Vincent Beffara

Figure: SLE(6): Credit Prof. Vincent Beffara

SLE phase transitions

- It is proved that there are two phase transitions when κ varies between 0 and ∞.

$$
\text { Up to } \kappa=4 \quad 4<\kappa<8 \quad \kappa=8 \text { and bigger }
$$

- The argument uses the phase transition of the Bessel process on the real line.
- In order to show this, consider the process $d Z_{t}=\frac{2 d t}{\kappa Z_{t}}-d B_{t}$, where $Z_{t}:=\frac{1}{\sqrt{\kappa}} g_{t}-B_{t}$.

SLE phase transitions

- When started with a real initial value, the process $d Z_{t}=\frac{2 d t}{\kappa Z_{t}}-d B_{t}$ is a real valued Bessel process with parameter $a=\frac{2}{\kappa}$.
- If $\kappa \leq 4$, then with probability one, the hitting time of zero $T_{x}=\infty$ for all non-zero $x \in \mathbb{R}$.
- If $\kappa \geq 4$, then with probability one, the hitting time of zero $T_{x}<\infty$ for all non-zero $x \in \mathbb{R}$.
- If $4<\kappa<8$ and $x<y \in \mathbb{R}$, then $\mathbb{P}\left(T_{x}=T_{y}\right)>0$.
- If $\kappa \geq 8$, then with probability one, $T_{x}<T_{y}$ for all reals $x<y$.

The Rough Paths perspective

- We consider the backward Loewner differential equation

$$
\partial_{t} h_{t}(z)=\frac{-2}{h_{t}(z)-\sqrt{\kappa} B_{t}}, \quad h_{0}(z)=z
$$

Figure: The images of a thin rectangle under the forward Loewner evolution (left) and backward Loewner evolution(right) for $\kappa=0$.

- Finally, we obtain the following RDE in the upper half plane:

$$
d z_{t}=\frac{-2}{z_{t}} d t-\sqrt{\kappa} d B_{t}
$$

The Lie bracket of the two vector fields and the uncorrelated diffusions

- We study an approximation to the solution of the RDE

$$
d z_{t}=\frac{-2}{z_{t}} d t-\sqrt{\kappa} d B_{t} .
$$

Remark

For $z=x+i y$, we have that $\left[\frac{-2 x}{x^{2}+y^{2}} \frac{\partial}{\partial_{x}}+\frac{2 y}{x^{2}+y^{2}} \frac{\partial}{\partial_{y}}, \sqrt{\kappa} \frac{\partial}{\partial_{x}}\right]=\frac{-2 \sqrt{\kappa}}{z^{2}}$.

Proposition

Let $\epsilon>0$. At space scale ϵ and time scale ϵ^{2} the increment of the horizontal Brownian motion B_{t} and the increment of the area process between t and B_{t} are uncorrelated. Moreover, they give the same order contribution in the approximation.

The field of ellipses

- We consider the field of ellipses associated with this diffusion. Note that these ellipses should be shifted along the drift.
- At this specific scales the directions and lengths of the axes are computed explicitly in terms of the argument θ and the parameter κ.

Figure: A schematic representation of the field of ellipses. The drift direction is represented in green.

Explicit dynamics and local truncation error up to the second level

Proposition

Fix $\epsilon>0$. The truncated second level order Taylor approximation \tilde{z}_{t} of the Loewner $R D E$ started from $\left|z_{0}\right|=\epsilon$, at time $\epsilon^{2}>0$ is an explicit function of κ, z_{0} and ϵ. Moreover, the local truncation error of the truncated Taylor approximation is $O(\epsilon)$.

- Important: the contribution of the second order approximation term

$$
\int_{0}^{\epsilon^{2}} \frac{-2 \sqrt{\kappa}}{Z_{t}^{2}} d A_{t} \text { is } O(\epsilon)
$$

$$
\text { since } \frac{1}{\left|Z_{0}\right|^{2}}=\frac{1}{\epsilon^{2}} \text { and } A_{\epsilon^{2}}=\frac{1}{2}\left(\int_{0}^{\epsilon^{2}} B_{s} d s-\int_{0}^{t} s d B_{s}\right) \text { is } O\left(\epsilon^{3}\right) \text {. }
$$

Elements of the proof

- The diffusive part of the approximation is described by the ellipses given by

$$
\left(T\left[\begin{array}{l}
u \\
v
\end{array}\right]\right)^{t}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] T\left[\begin{array}{l}
u \\
v
\end{array}\right]=1
$$

where

$$
T=\left[\begin{array}{cc}
\sqrt{\kappa \epsilon^{2}} & -\operatorname{Re} \frac{1}{z^{2}} \sqrt{\frac{\epsilon^{6}}{3} \kappa} \\
0 & -\operatorname{lm} \frac{1}{z^{2}} \sqrt{\frac{\epsilon^{6}}{3} \kappa}
\end{array}\right] .
$$

- We obtain the explicit squares of semi-axis of the ellipses $a_{1,2}(\kappa, \theta, \epsilon)$ as inverses of the solutions to

$$
\lambda^{2}-\lambda\left(\frac{1}{\kappa \epsilon^{2}}+\frac{3}{\kappa \epsilon^{6} \operatorname{Im}^{2} \frac{1}{z^{2}}}+\frac{\operatorname{ctg}^{2}(-2 \theta)}{\kappa \epsilon^{2}}\right)+\frac{3}{\kappa^{2} \epsilon^{8} \operatorname{Im}^{2} \frac{1}{z^{2}}}=0
$$

Future perspectives

- Compare the probability of crossing a sequence of centered annuli for the Forward Loewner evolution given by the Rough Paths approach with the one given by the typical Bessel process approach.
- Similarly, study the dynamics given by the Rough Paths approach on the boundary.
- Study in polar coordinates $\arg \left(z_{t}\right)$ using the logarithm mapping.

Thank you for your attention!

References

Peter Friz and Nicolas Victoir Multidimensional Stochastic Processes as Rough Paths. CUP, 2014
Terry J. Lyons Differential equations driven by rough signals. Rev. Mat. Iberoamericana, 14(2):215310, 1998.
Reter K. Friz, Atul Shekhar On the existence of SLE trace: finite energy drivers and non-constant Preprint: http://arxiv.org/abs/1511.02670 (to appear in in PTRF)
固 Boedihardjo, H., Ni, H. and Qian, Z. Uniqueness of Signature for Simple Curves, Journal of Functional Analysis, 267(6), 17781806, 2014.

國 Brent M. Werness. Regularity of Schramm-Loewner evolutions, annular crossings, and rough path theory. Electron. J. Probab., 17: no. 81, 21, 2012.

