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Conformal maps

Examples of conformal maps from upper halfplane with a slit to the
upper halfplane H .
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Conformal maps and the Loewner equation

In general, for a non-self crossing curve γ(t) : [0,∞)→ H̄ with
γ(0) = 0 and γ(∞) =∞, we consider the simply connected domain
H \ γ([0, t]).

Using the Riemann Mapping Theorem for the simply connected
domain H \ γ([0, t]), we have a three real parameter family of
conformal maps gt : H \ γ([0, t])→ H .

Loewner Equation encodes the dependence between the evolution of
the maps gt when the curve γ([0, t]) grows.
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Description of the conformal maps

Setting the behaviour of the mapping at ∞ as gt(∞) =∞ and
g ′t(∞) = 1, we write the Laurent expansion at ∞ of gt as

gt(z) = z + b0 +
b1
z

+
b2
z2

+ . . .

We fix the third paramater by choosing b0 = 0 .

The coefficient b1 = b1(γ([0, t])) is called the half-plane capacity of
γ(t) and is proved to be an additive, continous and increasing
function. Hence, by reparametrizing the curve γ(t) such that
b1(γ([0, t])) = 2t , we obtain

gt(z) = z +
2t

z
+ . . .
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Conformal maps and the Loewner equation

Is there a way to use gt to find gt+dt ?

In order to answer this question, we have to describe to find a way to
describe the mapping mt,dt : H \ gt(γ[t, t + dt])→ H .
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The Loewner equation and the square root map

The square root map that we investigated in the beginning gives the
description of the ’infinitesimal mapping’ mt,dt .

Heuristically, mt,dt(z) = Ut+dt +
√

(z − Ut)2 + 2dt ≈ z + 2dt
z−Ut

.

Furthermore, gt+dt(z) ≈ gt(z) + 2dt
gt(z)−Ut

.

We obtain the Loewner Differential Equation

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z .
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Loewner equation and random curves in the upper
half-plane

So far, we adopted the perspective that given the curve γt , the
conformal maps gt must satisfy

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z .

with Ut = g(γ(t)) .

From now on, we take the dual perspective. Given the driving
function Ut : [0,∞)→ R, we determine gt . Then, the maps gt
determine the curve γ(t) .

To output random continous curves, Ut has to be a random continous
driver. Moreover, the random driver Ut induces a law on the curves
γ(t) .
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Definition of SLE and dependence on κ

Definition

Let Bt be a standard real Brownian motion starting from 0 . The chordal
SLE(κ) is defined as the law on curves induced by the solution to the
following ordinary differential equation

∂tgt(z) =
2

gt(z)−
√
κBt

, g0(z) = z .
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Figure: SLE(1): Credit Prof. Vincent Beffara
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Figure: SLE(3.5): Credit Prof. Vincent Beffara
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Figure: SLE(4.5): Credit Prof. Vincent Beffara

Vlad Margarint (University of Oxford) SLE and Rough Paths Berlin WIAS August 2016 12 / 23



Figure: SLE(6): Credit Prof. Vincent Beffara
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SLE phase transitions

It is proved that there are two phase transitions when κ varies
between 0 and ∞ .

The argument uses the phase transition of the Bessel process on the
real line.

In order to show this, consider the process dZt = 2dt
κZt
− dBt , where

Zt := 1√
κ
gt − Bt .
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SLE phase transitions

When started with a real initial value, the process dZt = 2dt
κZt
− dBt is

a real valued Bessel process with parameter a = 2
κ .

If κ ≤ 4, then with probability one , the hitting time of zero Tx =∞
for all non-zero x ∈ R .

If κ ≥ 4, then with probability one, the hitting time of zero Tx <∞
for all non-zero x ∈ R .

If 4 < κ < 8 and x < y ∈ R, then P(Tx = Ty ) > 0 .

If κ ≥ 8 , then with probability one, Tx < Ty for all reals x < y .
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The Rough Paths perspective

We consider the backward Loewner differential equation

∂tht(z) =
−2

ht(z)−
√
κBt

, h0(z) = z .

Figure: The images of a thin rectangle under the forward Loewner evolution
(left) and backward Loewner evolution(right) for κ = 0 .

Finally, we obtain the following RDE in the upper half plane:

dzt =
−2

zt
dt −

√
κdBt .
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The Lie bracket of the two vector fields and the
uncorrelated diffusions

We study an approximation to the solution of the RDE

dzt =
−2

zt
dt −

√
κdBt .

Remark

For z = x + iy , we have that [ −2x
x2+y2

∂
∂x

+ 2y
x2+y2

∂
∂y
,
√
κ ∂
∂x

] = −2
√
κ

z2
.

Proposition

Let ε > 0 . At space scale ε and time scale ε2 the increment of the
horizontal Brownian motion Bt and the increment of the area process
between t and Bt are uncorrelated. Moreover, they give the same order
contribution in the approximation.
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The field of ellipses

We consider the field of ellipses associated with this diffusion. Note
that these ellipses should be shifted along the drift.
At this specific scales the directions and lengths of the axes are
computed explicitly in terms of the argument θ and the parameter κ.

Figure: A schematic representation of the field of ellipses. The drift direction
is represented in green.
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Explicit dynamics and local truncation error up to the
second level

Proposition

Fix ε > 0. The truncated second level order Taylor approximation z̃t of the
Loewner RDE started from |z0| = ε, at time ε2 > 0 is an explicit function
of κ, z0 and ε. Moreover, the local truncation error of the truncated Taylor
approximation is O(ε).

Important: the contribution of the second order approximation term∫ ε2

0

−2
√
κ

Z 2
t

dAt is O(ε) ,

since 1
|Z0|2 = 1

ε2
and Aε2 = 1

2

(∫ ε2
0 Bsds −

∫ t
0 sdBs

)
is O(ε3).
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Elements of the proof

The diffusive part of the approximation is described by the ellipses
given by (

T

[
u
v

])t [
A B
C D

]
T

[
u
v

]
= 1,

where

T =

√κε2 −Re 1
z2

√
ε6

3 κ

0 −Im 1
z2

√
ε6

3 κ

 .
We obtain the explicit squares of semi-axis of the ellipses a1,2(κ, θ, ε)
as inverses of the solutions to

λ2 − λ

(
1

κε2
+

3

κε6Im2 1
z2

+
ctg2(−2θ)

κε2

)
+

3

κ2ε8Im2 1
z2

= 0 .
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Future perspectives

Compare the probability of crossing a sequence of centered annuli for
the Forward Loewner evolution given by the Rough Paths approach
with the one given by the typical Bessel process approach.

Similarly, study the dynamics given by the Rough Paths approach on
the boundary.

Study in polar coordinates arg(zt) using the logarithm mapping.
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Thank you for your attention!

Vlad Margarint (University of Oxford) SLE and Rough Paths Berlin WIAS August 2016 22 / 23



References

Peter Friz and Nicolas Victoir Multidimensional Stochastic Processes
as Rough Paths. CUP, 2014

Terry J. Lyons Differential equations driven by rough signals. Rev.
Mat. Iberoamericana, 14(2):215310, 1998.

Peter K. Friz, Atul Shekhar On the existence of SLE trace: finite
energy drivers and non-constant Preprint:
http://arxiv.org/abs/1511.02670 (to appear in in PTRF)

Boedihardjo, H., Ni, H. and Qian, Z. Uniqueness of Signature for
Simple Curves, Journal of Functional Analysis, 267(6), 17781806,
2014.

Brent M. Werness. Regularity of Schramm-Loewner evolutions,
annular crossings, and rough path theory. Electron. J. Probab., 17: no.
81, 21, 2012.

Vlad Margarint (University of Oxford) SLE and Rough Paths Berlin WIAS August 2016 23 / 23


	Introduction to SLE
	The Rough Paths approach: Explicit truncated Taylor approximation
	Perspectives
	References

