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Definitions and first result

• (*)Random band matrices are the natural objects that interpolate in between the Wigner matrices and
Random Schrödinger operators. We consider Hermitian random band matrices H in d ⩾ 1 dimensions.
The matrix elements Hxy, indexed by x, y ∈ Λ ⊂ Zd, are independent, uniformly distributed random
variables if |x− y| is less than the band width W, and zero otherwise. We update the previous results of
the convergence of quantum diffusion in a random band matrix model from convergence of the expectation
to convergence in high probability. This new approach is similar with the one in [1] , where it was proved
that the quantum dynamics of the d-dimensional band matrix is given by a superposition of heat kernels
up to time scales t≪ W d/3 . Note that diffusion is expected to hold for t ∼ W 2 for d = 1 and up to any
time for d ⩾ 3 when the thermodynamic limit is taken. The threshold exponent d/3 is due to technical
estimates on certain Feynman graphs. In this new approach we use double-rooted Feynman graphs to
estimate the variance of the quantum diffusion.
Our main quantity is

P (t, x) = |(e−itH/2)0x|2 .

The function P (t, x) describes the quantum transition probability of a particle starting at the origin 0 and
ending in position x after time t .
We define the random variable that we are going to investigate by

YT,κ,W (ϕ) ≡ YT (ϕ) :=
∑
x

P (W dκT, x)ϕ

(
x

W 1+dκ/2

)
,

where ϕ ∈ Cb(Rd) is a test function in Rd.
Our main result gives an estimate for the variance of the random variable YT (ϕ) up to time scales
t = O(W dκ) if κ < 1/3 . Hence, as a Corollary we obtain the convergence in high probability of the
quantum diffusion in this model.

Theorem 0.1. Fix T0 > 0 and κ such that 0 < κ < 1/3 . Choose a real number β satisfying
0 < β < 2/3 − 2κ . Then there exists C ⩾ 0 and W0 ⩾ 0 depending only on T0, κ and β such that

for all T ∈ [0, T0] , W ⩾ W0 and N ⩾ W 1+d
6 we have

Var(YT (ϕ)) ⩽
C||ϕ||2∞
W dβ

.

Defintions and second result

• (**) We give a new proof of the Local Semicircle Law for the Wigner Ensemble by using intensively the al-
gebraic structure of resolvent expansions. We combine this with concentration of measure results and high
probability bounds. The conclusion is obtained using a bootstrapping argument that provides information
about the change of the bounds from large to small scales. To simplify the notation in our Lemmas, we
omit the z-dependence of G(z) .
Let H be a Wigner Matrix, and let H̃ = H+∆ be a perturbation of it. By iterating the resolvent identity
G̃ = G−G∆G̃ , we get the resolvent expansion

G̃(z) =

N−1∑
i=0

G(z)(−∆G(z))i + G̃(z)(−∆G(z))N .

We say that X is stochastically dominated by Y (and we use the notation X ≺ Y ) , uniformly in u, if for
all ε > 0 and large D > 0 we have

sup
u∈U (N)

P
[
X(N)(u) > NεY (N)(u)

]
⩽ N−D

for large N ⩾ N0(ε,D) .
For fixed γ ⩾ 0 we define the spectral domain

S ≡ SN (γ) := {z = E + iη : −N ⩽ E ⩽ N, N−1+γ ⩽ η ⩽ N} .

Theorem 0.2 (Local Semicircle Law for Wigner Matrices). Let H be a N ×N Wigner Matrix and let
ψ(z) := 1√

Nη
be a deterministic error parameter. If m(z) is the Stieltjes transform of the Semicircle

Law ρ(dx) = 1
2π

√
(4− x2)+dx, then we have that

max
i∈J1,...,NK |Gii(z)−m(z)| ≺ Fz(ψ(z)) ,

max
i̸=j

|Gij(z)| ≺ ψ(z) ,

uniformly for all z ∈ C+ such that η ⩾ N−1+γ , where Fz(r) :=

[(
1 + 1√

|z2−4|

)
r

]
∧
√
r .

Sketch of the proof of the first result

•We have the following bound for the main random variable.

Var(YT (ϕ)) = ⟨YT (ϕ);YT (ϕ)⟩ =
∑
y1,y2

ϕ

(
y1

W 1+dκ/2

)
ϕ

(
y2

W 1+dκ/2

)
⟨P (t, y1);P (t, y2)⟩

⩽ ||ϕ||2∞
∑
y1

∑
y2

|⟨P (t, y1);P (t, y2)⟩| .

⟨P (t, y1);P (t, y2)⟩ =

=
∑

n11,n12⩾0

∑
n21,n22⩾0

an11(t)an12(t)an21(t)an22(t)⟨H
(n11)
0y1

H
(n12)
y10

;H
(n21)
0y2

H
(n22)
y20

⟩ .

• In the left image is the skeleton Σ = S(Π) of the pairing Π after collapsing all the
parallel bridges . In the right image is represented the orbit of the vertex i.
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• To each pairing Π we associate a couple (Σ, lΣ), where Σ has no parallel bridges and lΣ := (lσ)σ∈Σ ∈ NΣ . The integer lσ denotes the number of parallel
bridges of Π that were collapsed into the bridge σ of Σ . In this manner we construct the set G of admissible skeletons. IfM is the number of points on the
lattice situated at distance at most the band width W from the origin and if we denote by |Σ| the number of bridges of the skeleton Σ, then we have that

∑
y1

∑
y2

⟨P (t, y1);P (t, y2)⟩ ⩽ C
∑
Σ∈G

∑
lΣ

|an11(Σ,lΣ)(t)an12(Σ,lΣ)(t)an21(Σ,lΣ)(t)an22(Σ,lΣ)(t)|
(

M

M − 1

)|lΣ|
M−|Σ|/3+2/3 . (1)

•We introduce a cut-off in the summation in (1) at |lΣ| ⩽Mµ for µ < 1/3. The main step of the proof of the final result is the following estimate for Σ ∈ G
with |Σ| ⩾ 3 (the cases |Σ| = 1 and |Σ| = 2 can be proved directly)

∑
lΣ

1(|lΣ| ⩽ Mµ)|an11(Σ,lΣ)(t)an12(Σ,lΣ)(t)an21(Σ,lΣ)(t)an22(Σ,lΣ)(t)| ⩽
CMµ(|Σ|−2)

(|Σ| − 3)!
.

Sketch of the proof of the second result

[Concentration of measure Lemma]

Let z ∈ S. If |Gkl| ≺ Nδ , then

|Gkl−E1Gkl| ≺
N3δ/2
√
Nη

, for all k, l ∈ J1, NK .

[Bound on the average Lemma]

Let s := 1
N

N∑
j=1

Gjj .

If |Gkl| ≺ Nδ for k, l ∈ J1, NK , it follows that
for all z ∈ S we have

1 + zs + s2 = O≺

(
(1 + |z|)N5δ

√
Nη

)
.

[Bound on scale η Lemma]

Let Γ(z) := maxk,l |Gkl(z)| ∨ 1 and let

Γ∗(z) := supη′⩾η Γ(E + iη′).
If for z ∈ S we have Γ∗(z) ≺ Nδ , it follows
that

max
i∈J1,NK |m−Gii| ≺ F

(
N5δ
√
Nη

)
Nδ ,

max
i̸=j∈J1,NK |Gij| ≺ N5δ/2

√
Nη

.

[Bootstrap argument to obtain bounds at
lower scales]

• For any M > 1 and z ∈ C+ , we have

Γ(E + iη/M) ⩽MΓ(E + iη) .

• Let K := max{k ∈ N : N/Nkδ ⩾ N−1+γ} .
For k ∈ J0, KK let zk := E + iηk, where

ηk =
N
Nkδ . Then we have that Γ∗(zk) ≺ 1 .
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