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[ Definitions and first result ]

e (*)Random band matrices are the natural objects that interpolate in between the Wigner matrices and
Random Schrodinger operators. We consider Hermitian random band matrices H in d > 1 dimensions.
The matrix elements Hyy, indexed by z,y € A C 7%, are independent, uniformly distributed random
variables if |x — y| is less than the band width W, and zero otherwise. We update the previous results of
the convergence of quantum diffusion in a random band matrix model from convergence of the expectation
to convergence in high probability. This new approach is similar with the one in [1], where it was proved
that the quantum dynamics of the d-dimensional band matrix is given by a superposition of heat kernels
up to time scales t < Wd/3  Note that diffusion is expected to hold for ¢ ~ W2 for d = 1 and up to any
time for d > 3 when the thermodynamic limit is taken. The threshold exponent d/3 is due to technical
estimates on certain Feynman graphs. In this new approach we use double-rooted Feynman graphs to
estimate the variance of the quantum diffusion.

Our main quantity is

P(t,z) = |7 H1), .

The function P(t, x) describes the quantum transition probability of a particle starting at the origin 0 and
ending in position x after time ¢ .
We define the random variable that we are going to investigate by

= PW¥T,z)¢ (Wlfdﬂ /2> ,

Y7 ew(@) = Yr(¢)

where ¢ € C’b(]Rd) is a test function in RY.

Our main result gives an estimate for the variance of the random variable Y7 (¢) up to time scales
= O(W) if ik < 1/3. Hence, as a Corollary we obtain the convergence in high probability of the

quantum diffusion in this model.

Theorem 0.1. Fix Ty > 0 and k such that 0 < k < 1/3. Choose a real number B satisfying
0 < B <2/3—2k. Then there exists C = 0 and Wy = 0 depending only on Ty, k and B such that

for all'T € 10,7y, W > Wy and N > W1+6 we have
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Var(Yp(¢)) <

[ Defintions and second result ]

o (**) We give a new proof of the Local Semicircle Law for the Wigner Ensemble by using intensively the al-

gebraic structure of resolvent expansions. We combine this with concentration of measure results and high
probability bounds. The conclusion is obtained using a bootstrapping argument that provides information
about the change of the bounds from large to small scales. To simplify the notation in our Lemmas, we
omit the z-dependence of G(z).

Let H be a Wigner Matrix, and let H = H + A be a perturbation of it. By iterating the resolvent identity
G = G — GAG, we get the resolvent expansion

N-—1
= 3 G)(-AGE) + G(=)(—AG(2)Y
1=0

We say that X is stochastically dominated by Y (and we use the notation X < Y') | uniformly in w, if for
all e > 0 and large D > 0 we have

sup PP {X(N>(u) > N5Y<N)(u)} < NP
ueU W)

for large N > Ny(e, D).
For fixed v > 0 we define the spectral domain

S=Sn(7) =

Theorem 0.2 (Local Semicircle Law for Wigner Matrices). Let H be a N x N Wigner Matriz and let
Y(z) = ﬁ be a deterministic error parameter. If m(z) is the Stieltjes transform of the Semicircle

Law p(dx) = Lﬂ\/(él — x2)ydx, then we have that

{z=F+in:—N<E<N, N7 <n< N}

e Gii(2) —

m(z)| < Fx(¢(2)),

rgl;f\G (2)] < ¥(z),

uniformly for all z € C1 such that n > N= | where Fy(r) = [(1 +— ) r] AT

[ Sketch of the proof of the first result ]

e We have the following bound for the main random variable.

= > ¢ (WHCWQ) ¢ (leilm/2> (P(t,y1); P(t,y2))
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Var(Yp(¢)) = (Yr(9)

(P(t,y1): P(t,y2)) =
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e [n the left image is the skeleton > = S(II) of the pairing II after collapsing all the
parallel bridges . In the right image is represented the orbit of the vertex .

rZL,) s(L,)

s(L,)
¥(L,)

e To each pairing II we associate a couple (X, Is), where X has no parallel bridges and Iy := (Ig) ex € N> The integer [, denotes the number of parallel
bridges of II that were collapsed into the bridge o of . In this manner we construct the set & of admissible skeletons. If M is the number of points on the
lattice situated at distance at most the band width W from the origin and if we denote by || the number of bridges of the skeleton ¥, then we have that

Mo\I=l
D D (P(ty)i Pty)) < C Y 0> an, 5s) Oy 510 Oty (510) (D510 () (M — 1) MR (1)
> Y1 Y2 e®B Iy

e We introduce a cut-off in the summation in (1) at |Is;| < MH* for p < 1/3. The main step of the proof of the final result is the following estimate for ¥ € &
with |2 > 3 (the cases [X| = 1 and |X| = 2 can be proved directly)

O MpHE=2)
Z ]' ‘ZZ‘ )‘ n11 Z lz)(t)anu(z],lg)<t>an21<z,lz)(t)a’nm(z,lz)(t)‘ < (‘E| L 3)' ’

[ Sketch of the proof of the second result ]

'Bound on scale  Lemma]

Bound on the average Lemma| [Bootstrap argument to obtain bounds at

lower scales|

Let T'(2) = ()] V 1 and let

Let s == 4 z G- [™(2) := supyy D(E + inf).
0 — * o
Let z € S. If |G| < N, then J= If for z € S we have ['*(2) < N?, it follows

:> If |Gyl < N(S for k,1 € |1, N], it follows that :> that :>

|Concentration of measure Lemma)

e For any M > 1 and z € C,, we have

N30/2 for all z € S we h L(E +in/M) < MU(E +in).
‘le—Eleﬂ < \/Ni . forall k,1 € [[1,N]] : orafl 2 €9 we have N55 5
7 . 2_ 0 (1+ |z])N zerﬁlla:)]if]] m = G| < F VN7 NT, o Let K = max{k € N: N/N > N—1+71
tasts =0< VN7 ' 5 /2 For k € [0, K] let 2. := E + ing, where
max |Gyl < N . N = % Then we have that I™(z) < 1.
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