IMAGE ANALYSIS USING

SHAPELETS FORMALISM
AND COMPRESSIVE SENSING

Margarint Vlad Dumitru
University of Bucharest
Bachelors in Mathematics
$2^{\text {nd }}$ year

Supervisors: Dr. Filipe Abdalla
Dr. Jason McEwen

The problem \& the context

1)Trying to recover images, in particular galaxy images made by Hubble Space Telescope.
2)The concept of recovery.
2.1)Noise;

$$
Y=X+W ;
$$

$Y=o b s e r v e d$ image;
$X=$ real image;
W=noise;

Low noise (Exp : 0.3s)

High noise (Exp : 0.003s)

De-noised
2.2)Point spread function;

1)Shapelets formalism

Orthonormal basis of a vectorial space;
-Used for representing the galaxies.

2)Compressive sensing

New efficient method of image analysingthat is trying tc reconstruct a N-length signal by using only $M<N$ measurements.

Compressive sensing method

The signal x in time domain can pe written in other basis of the vectorial space

$$
\mathbf{x}=\sum_{i=1}^{N} s_{i} \psi_{i} \quad \text { or } \quad \mathbf{x}=\psi \mathbf{s}
$$

The camera usually extracts all the coefficients with this method and keeps only K

$$
\mathbf{s}=\Psi^{T} \mathbf{X}_{\mathbf{X}}
$$

In this new method you will take m vectors with specific conditions
and form a matrix

$$
y_{j}=\left\langle\mathbf{x}, \phi_{j}\right\rangle
$$

Finding x sparse signal from y the measurement vector

$$
y=\Phi \mathrm{x}=\Phi \Psi \mathrm{s}=\Theta \mathrm{s}
$$

$$
y=A x+z,
$$

Compressive sensing method

Fig. 28

Subjected to $\min \|\|$ ||

Fig. 29

My work since the start of the project:

Part (1) The background of the theory:
--Hermite polynomials, Hermite Polar polynomials
and Laguerre polynomials;

Part (2)
--Cartesian and Polar Shapelets for 1D and for 2D .
--Creating images with the help of the Shapelets.

1)Cartesian system:

Hermite polynomials

The Hermite polynomials unnormalised recurrence relation

$$
H_{p}(x, n)=2 x H_{p}(n-1, x)-2(n-1) H_{p}(n-2, x)
$$

The Hermite polynomials normalised recurrence relation:

$$
\tilde{H}_{P}(n, x)=x \sqrt{2 / n} \tilde{H}_{P}(n-1, x)-\sqrt{n-1) / n} \tilde{H}_{P}(n-2, x) ;(2)
$$

Fig. 1

Fig. 2

Fig. 3

1)Cartesian system:

Shapelets for 1D

\square Shapelets for 1D that are obtained using the Hermite normalised polynomials weighted by an exponential function.

$$
\phi_{n}(x)=\operatorname{Shpl}(n, x)=\tilde{H} p(n, x) * \exp \left(\left(-x^{2}\right) / 2\right)
$$

$$
\int_{-\infty}^{\infty} d x \phi_{n}(x) \phi_{m}(x)=\delta_{n m}
$$

\square Observation: They form an orthonormal basis.

Ortotest results:
\square ortotest(2,2)
\square ans $=1.0000$
$\square \gg$ ortotest $(1,0)$
\square ans $=-3.6791 \mathrm{e}-18$

Fig. 4

1)Cartesian system: Shapelets for 2D

Extending the 1D Shapelet formalism to 2D Shapelet formalism.
Given an ($x 1, x 2$) Cartesian grid we can define in every point $(x 1, x 2)$ the 2D Shapelts:

$$
\phi_{\mathbf{n}}(\mathrm{x}) \equiv \phi_{n_{1}}\left(x_{1}\right) \phi_{n_{2}}\left(x_{2}\right),
$$

Observation : This basis is again orthonormal.

Fig. 5

$\mathrm{n} 1=1 ; \mathrm{n} 2=1$

$\mathrm{n} 1=3 ; \mathrm{n} 2=0$

Fig. 6
Fig. 7

2)Polar system:

Hermite polar polynomials;1D Polar shapelets

1)Hermite polar polynomials

Recurrence relation :
$\operatorname{hpr}(k, l, x)=(x /(I-k)) * I * \operatorname{hpr}(k, I-1, x)-(x /(I-k)) * k * h p r(k-1, l, x)$
2) The Laguerre polynomials can be defined in two ways:
2.1) $\operatorname{Lag}\left(z^{2}, k, l\right)=\operatorname{hpr}(k, l, z) *\left(1 /\left(\left((-1)^{k}\right) * k!*\left(z^{(l-k)}\right)\right)\right)$
2.2) $\operatorname{Lag} 1(k, l-k, x)=(2+((1-k)-1-x) / k) . * \operatorname{Lag} 1(k-1,(l-k), x)-(1+((1-k)-1) / k)^{*} \operatorname{Lag} 1(p-2,(1-k), x)$;

```
Observation: Results are consistent:
for k=1;|=2;
> zl=laguerre(x,1,2);
>> >> z2=laguerre1(1,1,x);
>> z1./z2
ans=Columns 1 through 7
1.0000 1.00001.00001.0000 1.00001.00001.0000
```

3)The polar 1d Basis function:

Fig. 10

2)Polar system:
 Polar 2D Shapelets

\square The basis function for 2D polar shapelets:
\square Usual coordinates transformations in a Cartesian grid:

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \theta=\operatorname{atan} 2(y, x)
\end{aligned}
$$

$$
\begin{aligned}
& \chi_{n, m}(r, \theta ; \beta)=\frac{(-1)^{\frac{n-|m|}{2}}}{\beta^{|m|+1}} {\left[\frac{\left(\frac{n-|m|}{2}\right)!}{\pi\left(\frac{n+|m|}{2}\right)!}\right]^{\frac{1}{2}} \times } \\
& r^{|m|} L_{\frac{n-|m|}{2}}^{|m|}\left(\frac{r^{2}}{\beta^{2}}\right) e^{\frac{-r^{2}}{2 \beta^{2}}} e^{-i m \theta}
\end{aligned}
$$

Fig. 11

2)Polar system: Polar 2D Shapelets

$\mathrm{k}=6$
$\mathrm{I}=0$

Fig. 15

Fig. 16

3)Creating images using Cartesian and Polar Shapelets

\square With the basis functions we can create images:
\square 1)Cartesian Shapelets for creating an image:
$\square \quad$ a)Random scalars

Fig. 17

$A(3,1)=1$

Fig. 19
$f(r, \theta)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{n, m} \chi_{n, m}(r, \theta ; \beta)$.
b) $A(1,1)=1$;

$$
A(2,2)=1
$$

Fig. 21

Fig. 18

$$
m=1 ; n=1 ;
$$

Fig. 22

3)Creating images using Cartesian and Polar Shapelets

$$
\begin{aligned}
& A(1,1)=1 ; \\
& A(2,1)=3 ;
\end{aligned}
$$

Fig. 23

3)Creating images using Cartesian and Polar Shapelets

Fig. 24

Fig. 26

Polar shapelets

Fig. 25

Fig. 27

Next steps :

1) Optimization of the polynomials codes.
2)Create a function to compute the forward shapelet transform by approximating the integral (i.e. from an image to shapelet coefficients);
$f(r, \theta)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{n, m} \chi_{n, m}(r, \theta ; \beta) . \quad \rightarrow \quad f_{n, m}=\iint_{\mathbb{R}} f(r, \theta) \chi_{n, m}(r, \theta ; \beta) r \mathrm{~d} r \mathrm{~d} \theta$.
3)Recover shapelet coefficients from a noisy simulation
\square Simulate an image with known shapelet coefficients

- Add noise
\square Recover the shapelet coefficients by forward transform
- Recover the shapelet coefficients by 11 minimisation (i.e. compressive sensing recovery);

Epilogue

Thank you for your attention!

