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    The problem & the context 

 

     1)Trying to recover images , in particular galaxy images   made by Hubble 
Space Telescope. 

     2)The concept of recovery. 

        2.1)Noise;                                                              

                     Y=X+W; 

Y=observed image; 

X=real image; 

W=noise; 

 

2.2)Point spread function; 
 

     

        

 

 

 



   

   

 1)Shapelets formalism   

- Orthonormal basis of a vectorial space; 

- -Used for representing the galaxies. 

  2)Compressive sensing  

- 

 New efficient method of image analysingthat is trying to 

reconstruct a N-length signal by using only M<N 

measurements. 



Compressive sensing method 

 

 

The signal x in time domain can pe written in other basis of the vectorial space 

The camera usually  extracts all  the coefficients 

with this method and keeps only K 

In this new method you 

will take m vectors with 

specific conditions 
and form a 

matrix 

Finding x sparse signal 

from y the measurement 

vector 



Compressive sensing method 

Fig.28 

Subjected to      min || ||1 

Fig.29 

 



My work since the start of the project: 

 

  Part (1) The background of the theory: 

 --Hermite polynomials , Hermite Polar polynomials 

and Laguerre polynomials;  

 

  

   

    Part (2) 

 --Cartesian and Polar Shapelets for 1D and for 2D . 

--Creating images with the help of the Shapelets. 

 



1)Cartesian system: 

         Hermite polynomials  
The Hermite polynomials unnormalised recurrence relation: 

    HP(x,n) = 2xHP(n − 1,x) − 2(n − 1)HP(n − 2,x)  

 The Hermite polynomials normalised recurrence relation: 

 

Fig.1 

Fig.2 

      Fig.3  



1)Cartesian system: 

  Shapelets for 1D 

 Shapelets for 1D that are obtained using the Hermite normalised 
polynomials weighted by an exponential function . 
 

 = 

 

 

v 

 

 

 Observation: They form an 

 orthonormal basis. 

 

Ortotest results: 

  ortotest(2,2) 

 ans =1.0000 

 >> ortotest(1,0) 

 ans =-3.6791e-18 
 

 

  

 

Fig.4 



1)Cartesian system: 

  Shapelets for 2D 

 Extending the 1D Shapelet formalism to 2D Shapelet formalism. 

Given an (x1,x2) Cartesian grid we can define in every point (x1,x2) the 2D Shapelts: 

 

 

 Observation : This basis is again orthonormal. 

 

 

 

 

Fig.5                                                       Fig.6                                               Fig.7 

n1= 1; n2= 1 n1=3; n2=0 

 

n1=0;n2=0 



2)Polar system: 

Hermite polar polynomials;1D Polar shapelets 
1)Hermite polar polynomials  

Recurrence relation : 

hpr(k,l,x) = (x / (l − k)) * l * hpr(k,l − 1,x) − (x / (l − k)) * k * hpr(k − 1,l,x)  

   2) The Laguerre polynomials can be defined in two ways: 

 2.1) Lag(z2,k,l) = hpr(k,l,z) * (1 / ((( − 1)k) * k! * (z(l − k))))                         

 

 2.2) Lag1(k,l-k,x) = (2 + ((l-k) − 1 − x) / k). * Lag1(k − 1,(l-k),x) − (1 + ((l-k) − 1) / k)*Lag1(p − 2,(l-k),x);  

 

 

Fig.10 

3)The polar 1d Basis function: 

 

Observation: Results are consistent: 

 for k=1;l=2; 

> z1=laguerre(x,1,2); 

>> >> z2=laguerre1(1,1,x); 

>> z1./z2 

ans = Columns 1 through 7 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 



2)Polar system: 

Polar 2D Shapelets 

 The basis function for  2D polar  shapelets: 

 Usual coordinates transformations in a Cartesian grid: 

                                                                    

 

 

Fig.11 Fig.12 

m=0; 

n=0; 

m=1; 

n=1; Relations between 

the coefficients: 

m=l-k  

n=l+k 



2)Polar system: 

Polar 2D Shapelets 

k=0 

l=6 
m=6 

n=6 
k=0 

l=6 

Real Imaginary 

m=6 

n=6 

Fig.13 Fig.14 

Fig.15 Fig.16 

k=6 

l=0 

m=-6 

n=6 
k=6 

l=0 
m=-6 

n=6 



3)Creating images  using  Cartesian     

and  Polar Shapelets 

 With the basis functions we can create images: 

 1)Cartesian Shapelets for creating an image: 

  a)Random scalars                                                     b) A(1,1)=1  ;               

 

Fig.17 Fig.18 

A(3,1)=1 

 
m=2; n=0; 

 

A(2,2)=1          m=1; n=1; 

 

Fig.19                                   Fig.20 
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3)Creating images  using  Cartesian     

and  Polar Shapelets 

 Fig.23 

A(1,1)=1; 

A(2,1)=3; 



3)Creating images  using  Cartesian     

and  Polar Shapelets 

                      Polar shapelets 

 

Fig.24 
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Fig.26 
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random 
A(1,1)=1 

m=2; 

n=2; 

A(3,3)=1 



 

 Next steps : 

 
1)Optimization of the polynomials codes. 

2)Create a function to compute the forward shapelet transform by 
approximating the integral (i.e. from an image to shapelet coefficients);  

 

 

 

3)Recover shapelet coefficients from a noisy simulation 

 Simulate an image with known shapelet coefficients 

 Add noise 

 Recover the shapelet coefficients by forward transform 

 Recover the shapelet coefficients by l1 minimisation (i.e. compressive 
sensing recovery); 

 
 

 

 

 

 



Epilogue 

                     

 

 

             Thank you for your attention! 


