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This material represents a continuation of the ideas that were developed
during the semester on the Seminar ”Topology from the differentiable view-
point” organized at ETH Zürich by Felix Hensel. The text contains a brief
introduction to differential forms in Euclidean space and in the context of
manifolds, along with their basic properties. The second part of the ma-
terial contains two main results regarding integration on manifolds: Stokes
Theorem and the Degree Theorem.

We will start by introducing the differential forms and to study their basic
properties. The first concept is the definition of an alternating k-form. Keep
in mind that a familiar example of alternating k-form is the determinant of
a matrix. In general:

Definition 1. Let Sk be the permutation group on k elements, i.e. the group
of all bijective maps σ : {1, 2, . . . , k} → {1, 2, . . . , k}.Let ε(σ) be the signature
of the permutation σ. An alternating k-form on a vector space V is a multi-
linear map ω : V × V × . . . × V︸ ︷︷ ︸

k times

→ R satisfying:

ω(vσ(1), . . . , vσ(k)) = ε(σ)ω(v1, . . . , vk), ∀ v1, . . . , vk ∈ V, ∀ σ ∈ Sk.

The vector space of all alternating k-forms on V will be denoted by:

ΛkV ∗ := {ω : V k → R| ω is an alternating k-form}.

Moreover, we can construct new alternating forms using previous ones:
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Definition 2. Let k, l ∈ N. We define the set of all (k, l) − shuffles Sk,l,
i.e. Sk,l ⊂ Sk+l is the set of all permutations that leave the order of the first
k elements and of the last l elements unchanged:

Sk,l := {σ ∈ Sk+l|σ(1) < σ(2) < σ(3) . . . < σ(k), σ(k+1) < σ(k+2) < . . . < σ(k+l)}.

Definition 3. The exterior product of two alternating forms ω ∈ ΛkV ∗ and
τ ∈ ΛkV ∗ is the k + l form ω ∧ τ ∈ Λ(k+l)V ∗ defined by:

(ω∧τ)(v1, . . . , vk+l) =
∑
σ∈Sk,l

ε(σ)ω(vσ(1), . . . , vσ(k))τ(vσ(k+1), . . . , vσ(k+l)), ∀ v1, . . . , vk+l ∈ V.

Another procedure of constructing new alternating forms is using a linear
map between two vector spaces :

Definition 4. Let φ : V → W be a linear map. The pull-back of an alter-
nating k-form ω ∈ ΛkW ∗ is the alternating k-form φ∗w on V defined by:

(φ∗ω)(v1, . . . , vk) := ω(φ(v1), . . . , φ(vk)), ∀ v1, . . . , vk ∈ V

Remark 1. We will use in the proof of the main results of the material the
following identity that represents in fact the generalization of the change of
variables rule in one-dimensional calculus. In the differential forms language
the identity can be written as follows :

If φ : V → V is an automorphism and ω ∈ ΛmV ∗, where m=dim(V ),
then we have that φ∗ω = det(φ)ω.

In the study of Differential Topology on manifolds we will define a special
family of alternating k-forms for which the domain of the definition is not a
general vector space but the tangent space at a given point on a manifold.

Definition 5. A differential k-form on M is a collection of alternating k-
forms (observe the index p ∈ M , so for each point on the manifold you can
define one) ωp ∈ TpM × TpM . . . × TpM → R such that ∀ k-tuple X1, . . . , Xk

of vector fields the function p 7→ ωp(X1(p), . . . , Xk(p)) is smooth.

A differential k-form ω is said to have compact support if the set:

supp(ω) := {p ∈M |ωp 6= 0}
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(called support of ω) is compact. We consider Ωk(M) to be the set of all
k-forms on M and Ωk

c (M) the set of all k-forms with compact support. The
concept of exterior product and pull-back can be defined in the context of
smooth manifolds exactly like they were defined before. Due to the fact
that the definition is dependent on the point the pointwise exterior product
defines a bilinear map: Ωk(M)× Ωl(M)→ Ωk+l(M)

(ω, z) 7→ ω ∧ z

such that for p ∈M we have (ω ∧ z)p := ωp ∧ zp.

In addition, given a smooth map between manifolds f : M → N and a
k-form ω on N we can define the pullback f ∗ω under f as the differential
k-form on M via:

(f ∗ω)p(v1, . . . , vk) := ωf(p)(df(p)v1, . . . , df(p)vk), ∀p ∈M, v1, . . . , vk ∈ TpM.

Another important tool in the study of differential forms is called the
exterior differential. Applying the exterior differential operator on a k-form
we obtain a k+1 form. The definition of such an operation is formulated
in Euclidean space but we will define it directly for differential forms on
manifolds (for the general definition consult [3]).

Definition 6. Let M be a m-dimensional manifold. We call {Ui, φi}i∈I an
atlas of M if it has the following properties:

1)
⋃
i∈I
Ui = M .

2)Each map φi : Ui → φi(Ui) is a homeomorphism onto an open set of
Rm such that the transition maps:

φji : φj ◦ φ−1i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

are smooth.

Definition 7. Let ω ∈ Ωk(M). The exterior differential of ω is the (k + 1)
form dω ∈ Ωk+1(M) defined by:

dω(x; ξ1, . . . , ξk+1) :=
k+1∑
j=1

(−1)j−1
d

dt

∣∣∣∣
t=0

ω(x+ tξj; ξ1, . . . , ξ̂j, . . . , ξk+1)

for x ∈ U and ξ1, ξ2, . . . , ξk+1 ∈ Rm. The hat indicates that the jth term is
deleted.

Moreover, we call the differential form ω:
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1)closed if dω = 0.

2)exact if ∃ η ∈ Ωk−1(M) such that dη = ω.

Definition 8. Let M be an m-dimensional manifold with an atlas (Ui, φi)i∈I
and ω ∈ Ωk(M) a differential k-form on M. Using the coordinate map we set:

ωi ∈ Ωk(φi(Ui) s.t. ω|Ui
= φ∗i (ωi) ∀i ∈ I.

The exterior differential of ω is the unique differential (k+1) form dω ∈
Ωk+1(M) that satisfies:

dω|Ui
= φ∗i dωi, ∀i ∈ I.

Remark 2. The most important properties that we are going to use in the
proofs of the theorems are:

1)Pull-back and the exterior product commute i.e.:

f ∗(ω ∧ z) = f ∗ω ∧ f ∗z, ∀f : M → N smooth, ∀z, ω ∈ Ωk(N).

2)Pull-back and the exterior derivative commute i.e.:

f ∗dφ = d(f ∗φ), ∀f : M → N smooth, ∀φ ∈ Ωk(M).

In the study of integration on manifolds we need several tools. Firstly, we
will need a precise definition about what integration on manifolds represents
and after that we will try to deduce important results using the properties
discussed in the beginning of the material. Before we start, we have to be
careful about the definition of the atlas in this material. In this material Ui
will be subsets of the manifold that are homeomorphic with open sets of the
upper half space Hm := {(x1, x2, x3, . . . , xm) ∈ Rm|xm ≥ 0}.

Let M be an oriented m- manifold M (with or without boundary, compact
or non-compact) and {Ui, φi}i∈I a (w.l.o.g.) positively oriented atlas of M
(i.e. the transition maps φij := φi ◦ φ−1j : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) are
smooth and det(dφij(x)) > 0 ∀i, j ∈ I). We can choose a partition of unity
ρi : M → [0, 1], i ∈ I subordinate to the open cover given by the atlas. Note
that the partition of unity exists also if the manifold is not oriented. In this
setting we can define rigorously the integration on a manifold:

Definition 9. Let ω be a differential m-form on the manifold M with com-
pact support (i.e. ω ∈ Ωm

c (M)) and ωi ∈ Ωm(φi(Ui)), gi : φi(Ui)→ R smooth,
such that ω|Ui

= φ∗iωi, where:

ωi =: gi(x)dx1 ∧ dx2 ∧ dx3 . . . ∧ dxm, ∀i ∈ I.
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The integral of ω over M is the real number:∫
M

ω =
∑
i∈I

∫
φi(Ui)

ρi(φ
−1
i (x))gi(x)dx1 . . . dxm.

The first remark that one should make is that the sum defined on the right
hand side is finite due to the fact that the partition of unity that we have
chosen it is subordinate to the cover given by the atlas. Since ω is compactly
supported, there are only finitely many i ∈ I such that gi is non-vanishing.

It the following we will prove that the integration procedure is well de-
fined, i.e. the result of the integration does not depend on the way we choose
the atlas and the subordinate partition of unity.

Lemma 1. Let (Ui, φi)i∈I and (Vj, ψj)j∈J two independent oriented atlases
of M, and {ρi}i∈I and {θj}j∈J the partitions of unity subordinate to the two
coverings of M. Then the integral of ω over M is independent of the two
oriented atlases.

Proof. For the first atlas we keep the notations like in the brief description
before the lemma.

In the second atlas following the definitions above we define: ωj ∈ Ωm(ψj(Vj))
by ωj =: hj(x)dx1 ∧ dx2 ∧ dx3 . . . ∧ dxm, ∀j ∈ J, where ω|Vj = ψ∗jωj and
hj : ψj(Vj)→ R.

From remark 1 it follows that:

gi(x) = hj(ψj ◦ φ−1i (x))det(d(ψj ◦ φ−1i )(x)), ∀z ∈ φi(Ui ∩ Uj).

Due to the fact that both atlases are positively oriented then the value
det(d(ψj ◦ φ−1i )(x)) > 0. Using the fact that {ρi}i∈I and {ψj}j∈J are two
partitions of unity and change of the variable formula in integration we ob-
tain that:∫

M
ω =

∑
i∈I

∫
φi(Ui)

(ρi ◦ φ−1i )gidx
1dx2 . . . dxm

=
∑
i∈I

∑
j∈J

∫
φi(Ui∩Vj)(ρi ◦ φ

−1
i )(θj ◦ φ−1i )gidx

1dx2 . . . dxm

=
∑
i∈I

∑
j∈J

∫
ψj(Ui∩Vj)(ρi ◦ ψ

−1
j )(θj ◦ φ−1j )hjdy

1dy2 . . . dym

=
∑
j∈J

∫
ψj(Vj)

(θj ◦ ψ−1j )hidy
1dy2 . . . dym.

Remark 3. If the two atlases from the previous lemma were reverse oriented
then the proof will be the same except that the result will have the opposite
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sign. More generally, if f : M → N is a diffeomorphism between oriented
m-manifolds then

∫
M

(f ∗ω) = +
∫
N
ω, ∀ω ∈ Ωm

c (N), if f is orientation pre-
serving and

∫
M

(f ∗ω) = −
∫
N
ω, ∀ω ∈ Ωm

c (N), if f is orientation reversing.

One important result in the integration over manifolds is the Theorem
of Stokes that will be presented in the following. The proof is composed of
three steps and it uses Fubini’s theorem for multiple integration.

Theorem 1. Let M be an oriented m-manifold with boundary and let ω ∈
Ωm−1
c (M). We have the following equality:∫

M

dω =

∫
∂M

ω.

Proof. Step 1)First, we will prove the result for M=Hm. The boundary of
this domain is exactly the set of points (x1, x2, . . . , xm) ∈ Rm that satisfy
xm = 0. This set is clearly diffeomorphic to Rm−1. Consider gi : Hm → R
smooth functions with compact support in the upper half space. We take
the differential (m− 1) form:

ω =
m∑
i=1

gi(x)dx1 ∧ dx2 ∧ dx3 . . . ,∧d̂xi . . . ∧ dxm,

where the ”hat” means that the corresponding term is deleted in the ith

summand. Using the definition of the exterior derivative we obtain that :

dω =
m∑
i=1

∂gi
∂xi

dxi ∧ dx1 . . . ∧ dxm.

Using the commutativity relation for the wedge product we obtain that:

dω =
m∑
i=1

(−1)i−1
∂gi
∂xi

dx1 ∧ dx2 . . . ∧ dxm.

Due to the fact that gi has compact support ∀i ∈ I choose R > 0
large enough such that the support of each gi is contained in the ”box”
[−R,R]m−1 × [0, R]. From Fubini’s theorem and the remark that the value
of the differential form on the boundary is given by:

ω|∂Hm = gm(x1, x2, . . . , xm−1, 0)dx1dx2 . . . dxm−1.

It follows:
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∫
Hm

dω =
m∑
i=1

(−1)i−1
∫ R

0

∫ R

−R
. . .

∫ R

−R

∂gi
∂xi

(x1, x2, . . . , xm)dx1 . . . dxm

= (−1)m−1
∫ R

−R
. . .

∫ R

−R

∫ R

0

∂gm
∂xm

(x1, x2, . . . , xm−1, xm)dxmdx1 . . . dxm−1

= (−1)m
∫ R

−R
. . .

∫ R

−R
gm(x1, . . . , xm−1, 0)dx1 . . . dxm−1

=

∫
∂Hm

w.

The last but one equality is a consequence of the Fundamental Theorem of
Calculus. To make it more precise, only the last term remains in the equality
when Fubini’s theorem is used because all the integrals up to order m are
vanishing. The reason for that is the Fundamental Theorem of Calculus.
Moreover, because the outward pointing unit normal at the boundary of Hm

is n = (0, 0, 0, . . . ,−1) it follows that the orientation of Hm is (−1)m times
the orientation of the standard Rm−1.

Step 2 :We will prove the same result with the condition that the (m− 1)
differential form has its compact support contained in a coordinate chart.

Let’s consider φi : Ui → φi(Ui) ⊂ Hm a coordinate chart for the manifold
M and ω ∈ Ωm−1

c (M) with supp(ω) ⊂ Ui.
We can define ωi ∈ Ωm−1(φi(Ui)) by ω|Ui

= φ∗iωi. Using this procedure
we can extend ωi to all of Hm by setting it to be zero on the complement of
φi(Ui) in Hm. On the boundary we have that φi(Ui ∩ ∂M) = φi(Ui) ∩ ∂Hm.
Using Step 1 we obtain that:
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∫
M

dω =

∫
Ui

d(φ∗iωi)

=

∫
Ui

φ∗i dωi

=

∫
φi(Ui)

dωi

=

∫
φi(Ui)∩∂Hm

ωi

=

∫
Ui∩∂M

φ∗iωi

=

∫
∂M

ω.

The sequence of equalities it is motivated, in this order, by the the prop-
erties that we studied for the pull-back of the differential forms, change of
variable formula, the formula that we derived in Step 1, and using again the
change of the variable formula.

Step 3): We are going to prove the theorem in its general form. For this,
choose an atlas (Ui, φi)i∈I and a partition of unity ρi : M → [0, 1] subordinate
to this atlas. By Step 2 the following sequence of equalities holds:

∫
M

dω =
∑
i

∫
M

d(ρiω)

=
∑
i

∫
∂M

ρiω

=

∫
∂M

ω.

The last step proves the result in its generality.

The theorem of Stokes has many applications to problems that arise from
Physics. Under certain conditions, it relates the value of a surface integral of
a function with the one computed on the boundary for another function. The
result has a lot of applications in many problems both abstract and concrete
like: measuring the heat flux of a given heat source on a given surface (for
example, that heat source can be a star) or measuring the water pressure on
the boundary of a cylindrical tube.

We apply the Theorem of Stokes in the following examples:
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Example 1. 1)Stokes theorem in the 2 dimensional Euclidean space has
the following form: Consider f, g : R2 → R two smooth functions and the
following differential form: ω = fdx + gdy ∈ Ω1(R2). Consider a domain
U ∈ R2 with boundary ∂U given by a positively oriented, piece-wise smooth,
simple closed curve. Then using the properties that we presented in the first
part of the material we deduce that dω = (∂g/∂x − ∂f∂y)dx ∧ dy. Finally,
using Stokes Theorem we deduce the following equality:∫

U

(∂g/∂x− ∂f/∂y)dx ∧ dy =

∫
∂U

(fdx+ gdy).

2)If M is an oriented m-manifold without boundary and ε ∈ Ωm−1
c (M) is

a compactly supported (m− 1) form it follows from Stokes theorem that:∫
M

dε = 0.

Example 1.2) is the starting point in the study of the next result: The
Degree Theorem. First, we will study a result about integration and exact-
ness. If M is a connected manifold there is a result conversely to the one in
Example 1.2) given by the following theorem:

Theorem 2. Given M a connected oriented m-dimensional manifold without
boundary and ω ∈ Ωm

c (M) then the integral over M of ω vanishes if and only
if there is an (m− 1) form τ on M with compact support such that dτ = ω.

Note: The proof will use a corollary of Cartan’s Theorem that is not going
to be proven in this material. For a complete proof of the result consult [3].
Before introducing the theorem of Cartan we will introduce the necessary
concepts:

Let M and N be two smooth manifolds, I ⊂ R be an interval and

I ×M → N : (t, p) 7→ φt(p)

be a smooth map. For t ∈ I we define the operator

ht : Ωk(N)→ Ωk−1(M)

by

(htω)p(v1, v2, . . . , vk−1) = ωφt(p)(∂tφt(p), dφt(p)v1, . . . , dφt(p)vk−1), ∀p ∈M, vi ∈ TpM.

Cartan’s Theorem states the following:
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Theorem 3. For every differential k form ω ∈ Ωk(N) with the notations as
before we have that:

d

dt
φ∗tω = dhtω + htdω.

In the proof of Theorem 2 we will use the following corollary of Cartan’s
theorem :

Corollary 1. Given M and N two oriented manifolds without boundary and
φt : M → N with t ∈ [0, 1] be a proper smooth homotopy (i.e. a map
that reverts compact subsets of the codomain into compact subsets of the
domain and in addition is a smooth homotopy) so that: given K ⊂ N compact
⇒
⋃
t

φ−1t (K) ⊂ M is compact. For every ω ∈ Ωk
c (N) closed k-form there

exists a (k − 1) form τ ∈ Ωk
c (N) with the following property:

dτ = φ∗1ω − φ∗0ω.

The proof of the corollary is just a simple application of Cartan’s Theo-
rem:

Proof. Taking the operator ht : Ωk(M)→ Ωk−1(M) defined before we obtain:

φ∗1ω − φ∗0ω =

∫ 1

0

d

dt
(φ∗tω)dt

=

∫ 1

0

d(htω)dt

= dτ.

In the last equation we took τ :=
∫ 1

0
htωdt.

We are now ready to prove Theorem 2 :

Proof. ⇐ This part of the theorem is a direct consequence of Stokes’s theo-
rem.
⇒ This proof is going to be done in two steps:
Step 1) Let f : Rm → R whose support is contained in the cube (a, b)m.

Then there are smooth functions vi : Rm → R, ∀i = 1, 2, . . .m such that

f =
m∑
i=1

∂vi
∂xi

. Given the properties of the exterior derivative we have that the

differential m form can be expressed as:

fdx1 ∧ dx2 ∧ dx3 . . . ∧ dxm = d(
m∑
i=1

(−1)i−1uidx
1 ∧ dx2 . . . d̂xi ∧ dxm).
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This can be proven using the existance of the so called bump function.
Their existance guarantees that we can use a smooth function with ρ : R→
[0, 1] which satisfies:

ρ(t) =

{
0, for t ≤ a+ ε
1, for t ≥ b− ε.

Define fi : Rm → R by f0 = 0 and fm = f . For all i = 1, 2, . . . ,m− 1 we
will conveniently define the following smooth functions with compact support
in (a, b)m(this will follow directly from the definition of ρ and fi):

fi =

∫ b

a

. . .

∫ b

a

f(x1, x2, . . . , xi, ωi+1, ωi+2, . . . , ωm)ρ̇(xi+1) . . . ρ̇(xm)dωi+1 . . . dωm.

Considering the previous definition we will our function ui such that their par-

tial derivatives sum up to f : ui :=
∫ xi
a

(fi−fi−1)(x1, . . . , xi−1, ω, xi, . . . , xm)dω.
From the definition of fi and fi−1 we have that ui is compactly supported.

In addition, from the Fundamental Theorem of Calculus we obtain the desired
equality: ∂ui

∂xi
= fi − fi−1.

Step 2)In the second step we will prove the ⇒ implication. Fix a point
p0 ∈M and take an open neighborhood U0 ⊂M containing p0. We can con-
sider an orientation preserving coordinate chart such that φ0(U0) = (0, 1)m

the m-dimensional open cube in Rm. Now, the condition that M is connected
and has no boundary becomes essential because for every p ∈M we can con-
struct a diffeomorphism ψp : M → M such that ψp(p0) = p and in addition
ψp is isotopic with the identity. Varying p ∈ M we obtain an open cover
of the manifold(namely the open sets of the cover are Up := ψp(U0). Next,
we choose a partition of unity {ρp}p∈M subordinate to this special cover. In
the hypothesis we assumed that the support of ω is compact so there are
only finitely many points p ∈ M such that ρp 6= 0 on supp(ω) which will be
denoted by p1, p2, . . . , pn. We will abbreviate for simplicity in the following
way: Ui := Upi ; ρi := ρpi ; ψi := ψpi . It is clear that, supp(ρi) ⊂ Ui and
n∑
i=1

ρi|supp(ω) = 1. Using the fact that the partition of unity is suboridinated

to this particular cover we have that supp(ρiω) ⊂ Ui. Using the definition
of the pull-back it follows that supp(ψ∗i (ρiω)) ⊂ U0. Now we can use the
fact that ψi is homotopic to the identity (so it respects the conditions of
the Corollary of Cartan’s Theorem) and φiω has compact support to obtain
that exists a compactly supported (m − 1) form τi ∈ Ωm−1

c (M) such that
dτi = ψ∗i (ρiω) − ψ∗0(ρiω). Using the fact that the map is homotopic to the

11



identity (so ψ∗0 is equal to the identity) we obtain that:∫
M

n∑
i=1

ψ∗i (ρiω) =

∫
M

n∑
i=1

(dτi + ρiω).

Using the fact that τi is compactly supported and Stokes Theorem together
with ∂M = 0 we obtain that:∫

M

n∑
i=1

dτi + ρiω =

∫
M

n∑
i=1

ρiω =

∫
M

ω = 0.

Now, we will use our coordinate chart to evaluate our integral in Rm.

Using the fact that ψ∗i (ρiω) (and also
n∑
i=1

ψ∗i (ρiω))has its support in ψ−1i (Ui) =

U0 and that φ0(U0) = (0, 1)m we can take the pushforward of the sum using

the chart φ0 denoted by (φ0)∗
n∑
i=1

ψ∗i (ρiω) (i.e. the sum of the corresponding

elements in M via φ0) and we obtain that:∫
Rn

(φ0)∗

n∑
i=1

ψ∗i (ρiω) =

∫
M

n∑
i=1

ψ∗i (ρiω) = 0.

The previous equality is obtained using the fact that our functions can be
smoothly extended by setting it equal to 0 on Rm \ (0, 1)m.

Using Step 1 there is an (m − 1) form τ0 ∈ Ωm−1
c (Rm) with support in

(0, 1)m such that:

dτ0 = (φ0)∗

n∑
i=1

ψ∗i (ρiω).

It follows that φ∗τ0 ∈ Ωm−1
c (U0) has compact support in U0 and therefore

extends to all of M by setting it to be equal to zero on M \ U0. This exten-

sion satisfies dφ∗0τ0 =
n∑
i=1

ψ∗i (ρiω) and because of that we have the following

sequence of equalities:

ω =
n∑
i=1

ψ∗i (ρiω)−
n∑
i=1

(ψ∗i (ρiω)− ρiω) = dφ∗0τ0 −
n∑
i=1

dτi = d(φ∗0τ0 −
n∑
i=1

τi).

The previous equality shows the existence of the desired differential form,

namely τ := φ∗0τ0 −
n∑
i=1

τi.
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The last result of this material is the Degree Theorem that relates the
value of the integral of a differential form and the integral of its pull-back
with an arbitrary smooth map between two compact, oriented manifolds
without boundary of the same dimension. The theorem holds if given an
arbitrary smooth map f : M → N we require N to be connected. Firstly,
we have to define the degree of a map using the following result:

Lemma 2. Let f : M → N be a smooth map between two m-dimensional
compact manifolds without boundary. If q ∈ N is a regular value of f then
f−1(q) is finite in M.

Proof. The set f−1(q) is a closed set in M due to the fact that is the preimage
of the closed set {q} ∈ N . Due to the fact that any closed subset of a compact
topological space is compact it follows that f−1(q) is compact. Using the
fact that q is a regular value it follows that the differential of f is surjective
between two tangent spaces of the same dimension we obtain that f is a local
diffeomorphism. Using the inverse function theorem we obtain that f−1(y) is
discrete. Due to the fact that a discrete and compact set is finite we obtain
the conclusion.

Now, we can denote the elements of f−1(q) by {p1, p2, . . . , pn}. We con-
sider εi = ±1 according to the orientation preserving or reversing of the
differential df(pi) : TpiM → TqN (i.e. εi = sign(det(df(pi))). Now, we will
define the degree of f to be:

deg(f) :=
n∑
i=1

εi.

The following result is the Degree Theorem :

Theorem 4. Let M and N be compact oriented smooth m-manifolds without
boundary and in addition N is connected. It follows that for every smooth
map f : M → N and every ω ∈ Ωm(N) we have:∫

M

f ∗ω = deg(f)

∫
N

ω.

Proof. Let us consider a regular value q ∈ N of f . We consider the following:

f−1(q) = {p1, p2, . . . , pn}, εi = sign(det(df(pi))), deg(f) =
n∑
i=1

εi.

There are open neighborhoods V ⊂ N of q and Ui ⊂ M of pi for i =
1, 2, . . . , n such that:
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i) f restricts to a diffeomorphism from Ui → V ∀i; and it is orientation
preserving when εi = +1 and orientation reversing when εi = −1.

ii)The sets Ui are pairwise disjoint.
iii)f−1(V ) = U1 ∪ . . . ∪ Un.
Since df(pi) : TpiM → TqN is a vector space isomorphism it follows

from the Inverse Function Theorem that there exists Vi, i ∈ {1, 2, . . . , n},
connected open neighborhoods of q such that f |Ui : Ui → Vi is a diffeomor-
phism. We can actually choose Ui to be pairwise disjoint and we have that
f−1(V ) = U1 ∪ U2 . . . ∪ Un.

We define:

V := V1 ∩ V2 ∩ V3 . . . ∩ Vn \ f(M \ U1 ∪ U2 . . . ∪ Un).

It follows that Ui ⊇ Ui ∩ f−1(V ). Considering ω ∈ Ωm(N) with compact
support in V we obtain:∫

M

f ∗ω =
n∑
i=1

∫
Ui

f ∗ω =
n∑
i=1

εi

∫
V

ω = deg(f)

∫
N

ω.

The equations follow from the choice of the sets Ui. We have to assure an
universal result (i.e. given another differential m-form ω′ with supp(ω′) ⊂ V
and

∫
N
ω =

∫
N
ω′ we will obtain the same equality). This will follow from the

fact that ω′ is compactly supported and the basic properties of the pull-back
with respect to the exterior derivative:

We have that
∫
N

(ω − ω′) = 0 and using the previous theorem we have
that there exists τ ∈ Ωn−1(N) such that dτ = ω − ω′. It follows:∫

M

f ∗ω =

∫
M

f ∗(ω′ + dτ)

=

∫
M

f ∗ω +

∫
M

f ∗dτ

=

∫
M

f ∗ω′ +

∫
M

d(f ∗τ)

= deg(f)

∫
N

ω′

= deg(f)

∫
N

ω.

The fact that ω′ is compactly supported in V proves the last but one
equality and gives the final argument of the proof.
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